Skip to main content
Log in

Protein phylogeny of translation elongation factor EF-1α suggests microsporidians are extremely ancient eukaryotes

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Partial regions of the mRNA encoding a major part of translation elongation factor 1α (EF-1α) from a mitochondrion-lacking protozoan,Glugea plecoglossi, that belongs to microsporidians, were amplified by polymerase chain reaction (PCR) and their primary structures were analyzed. The deduced amino acid sequence was highly divergent from typical EF-1α's of eukaryotes, although it clearly showed a eukaryotic feature when aligned with homologs of the three primary kingdoms. Maximum likelihood (ML) analyses on the basis of six different stochastic models of amino acid substitutions and a maximum parsimony (MP) analysis consistently suggest that among eukaryotic species being analyzed,G. plecoglossi is likely to represent the earliest offshoot of eukaryotes. Microsporidians might be the extremely ancient eukaryotes which have diverged before an occurrence of mitochondrial symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EF-1α:

translation elongation factor 1α

EF-Tu:

translation elongation factor Tu

SrRNA:

small subunit ribosomal RNA

ML:

maximum likelihood

MP:

maximum parsimony

PCR:

polymerase chain reaction

References

  • Adachi J, Hasegawa M (1992) Computer science monographs, No. 27, MOLPHY: Programs for molecular phylogenetics: I—PROTML: maximum likelihood inference of protein phylogeny. Institute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Auer J, Spicker G, Mayerhofer L, Pühler G, Böck A (1990) Organization and nucleotide sequence of a gene cluster comprising the translation elongation factor 1α from the extreme thermophilic archaebacteriumSulfolobus acidocaldarius. Syst Appl Microbiol 14:14–22

    Google Scholar 

  • Axelos M, Bardet C, Liboz T, Le Van Thai A, Curie C, Lescure B (1989) The gene family encoding theArabidopsis thaliana translation elongation factor EF-1α: molecular cloning, characterization and expression. Mol Gen Genet 219:106–112

    Google Scholar 

  • Baldacci G, Guinet F, Tillit J, Zaccai G, de Recondo AM (1990) Functional implications related to the gene structure of the elongation factor EF-Tu fromHalobacterium marismortui. Nucleic Acids Res 18:507–511

    Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562

    Google Scholar 

  • Brands JHGM, Maassen JA, van Hemert FJ, Amons R, Möller W (1986) The primary structure of the α subunit of human elongation factor 1. Structural aspects of guanine-nucleotide-binding sites. Eur J Biochem 155:167–171

    Google Scholar 

  • Brown JR, Doolittle WF (1995) The root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA 92:2441–2445

    Google Scholar 

  • Cao Y, Adachi J, Yano T, Hasegawa M (1994a) Phylogenetic place of guinea pigs: no support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences. Mol Biol Evol 11:593–604

    Google Scholar 

  • Cao Y, Adachi J, Janke A, Pääbo S, Hasegawa M (1994b) Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J Mol Evol 39:519–527

    Google Scholar 

  • Cavalier-Smith T (1987) Eukaryotes with no mitochondria. Nature 326:332–333

    Google Scholar 

  • Cavalier-Smith T (1989) Archaebacteria and archezoa. Nature 339:100–101

    Google Scholar 

  • Cavalier-Smith T (1991) The evolution of cells. In: Osawa S, Honjo T (eds) Evolution of life: fossils, molecules, and culture. Springer-Verlag, Tokyo, pp 271–304

    Google Scholar 

  • De Meester F, Bracha R, Huber M, Keren Z, Rozenblatt S, Mirelman D (1991) Cloning and characterization of an unusual elongation factor-1α cDNA fromEntamoeba histolytica. Mol Biochem Parasitol 44:23–32

    Google Scholar 

  • Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol 166:557–580

    Google Scholar 

  • Hasegawa M, Fujiwara M (1993) Relative efficiencies of maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phylogenet Evol 2:1–5

    Google Scholar 

  • Hasegawa M, Hashimoto T (1993) Ribosomal RNA trees misleading? Nature 361:23–23

    Google Scholar 

  • Hasegawa M, Hashimoto T, Adachi J (1992a) Origin and evolution of eukaryotes as inferred from protein sequence data. In: Hartman H, Matsuno K (eds) The origin and evolution of the cell. World Scientific, Singapore

    Google Scholar 

  • Hasegawa M, Cao Y, Adachi J, Yano T (1992b) Rodent polyphyly? Nature 355:595–595

    Google Scholar 

  • Hasegawa M, Hashimoto T, Adachi J, Iwabe N, Miyata T (1993) Early branchings in the evolution of eukaryotes: ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence data. J Mol Evol 36:380–388

    Google Scholar 

  • Hasegawa M, Kishino H (1994) Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol 11:142–145

    Google Scholar 

  • Hashimoto T, Adachi J, Hasegawa M (1992) Phylogenetic place of Giardia lamblia, a protozoan that lacks mitochondria. Endocytobiosis Cell Res 9:59–69

    Google Scholar 

  • Hashimoto T, Nakamura Y, Nakamura F, Shirakura T, Adachi J, Goto N, Okamoto K, Hasegawa M (1994) Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan,Giardia lamblia. Mol Biol Evol 11:65–71

    Google Scholar 

  • Hashimoto T, Nakamura Y, Kamaishi T, Adachi J, Nakamura F, Okamoto K, Hasegawa M (1995a) Phylogenetic place of kinetoplastid protozoa inferred from protein phylogeny of elongation factor 1α. Mol Biochem Parasitol 70:181–185

    Google Scholar 

  • Hashimoto T, Nakamura Y, Kamaishi T, Nakamura F, Adachi J, Okamoto K, Hasegawa M (1995b) Phylogenetic place of a mitochondrion-lacking protozoan,Giardia lamblia, inferred from amino acid sequences of elongation factor 2. Mol Biol Evol 12:782–793

    Google Scholar 

  • Hoshina T (1951) On a new microsporidian,Pleistophora anguillarum n.sp., from the muscle of the eel,Anguilla Japonica. J Tokyo Univ Fish 38:35–49

    Google Scholar 

  • Hovemann B, Richer S (1988) Two genes encode related cytoplasmic elongation factors 1-α (EF-1) inDrosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res 16:3175–3194

    Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Google Scholar 

  • Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 30:151–160

    Google Scholar 

  • Kurasawa Y, Numata O, Katoh M, Hirano H, Chiba J, Watanabe Y (1992) Identification ofTetrahymena 14-nm filament-associated protein as elongation factor 1α. Exp Cell Res 203:251–258

    Google Scholar 

  • Lechner K, Böck A (1987) Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. Mol Gen Genet 208:523–528

    Google Scholar 

  • Leipe DD, Gunderson JH, Nerad TA, Sogin ML (1993) Small subunit ribosomal RNA+ ofHexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol 59:41–48

    Google Scholar 

  • Linz JE, Lira LM, Sypherd PS (1986) The primary structure and the functional domains of an elongation factor-1α fromMucor racemosus. J Biol Chem 261:15022–15029

    Google Scholar 

  • Lom J, Dyková I (1992) Protozoan parasites of fishes. Elsevier Science, Amsterdam

    Google Scholar 

  • Miyata T, Iwabe N, Kuma K, Kawanishi Y, Hasegawa M, Kishino H, Mukohata Y, Ihara K, Osawa S (1991) Evolution of archaebacteria: phylogenetic relationships among archaebacteria, eubacteria, and eukaryotes. In: Osawa S, Honjo T (eds) Evolution of life: fossils, molecules, and culture. Springer-Verlag, Tokyo, pp 337–351

    Google Scholar 

  • Montandon PE, Stutz E (1990) Structure and expression of theEuglena gracilis nuclear gene coding for the translation elongation factor EF-1a. Nucleic Acids Res 18:75–82

    Google Scholar 

  • Nagashima K, Kasai M, Nagata S, Kaziro Y (1986) Structure of the two genes coding for polypeptide chain elongation factor 1-α (EF-1α) fromSaccharomyces cerevisiae. Gene 45:265–273

    Google Scholar 

  • Pokalsky AR, Hiatt WR, Ridge N, Rasmussen R, Houck CM, Shewmaker CK (1989) Structure and expression of elongation factor 1α in tomato. Nucleic Acids Res 17:4661–4673

    Google Scholar 

  • Rivera MC, Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76

    Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D Reidel, Dordrecht

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd ed. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shirakura T, Hashimoto T, Nakamura Y, Kamaishi T, Cao Y, Adachi J, Hasegawa M, Yamamoto A, Goto N (1994) Phylogenetic place of a mitochondria-lacking protozoan,Entamoeba histolytica, inferred from amino acid sequences of elongation factor 2. Jpn J Genet 69:119–135

    Google Scholar 

  • Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463

    Google Scholar 

  • Sogin ML, Edman U, Elwood H (1989a) A single kingdom of eukaryotes. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier Science, Amsterdam, pp 133–143

    Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989b) Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA fromGiardia lamblia. Science 243:75–77

    Google Scholar 

  • Takahashi S, Egusa S (1977) Studies onGlugea infection of the ayu,Plecoglossus altivelis—I. Description of theGlugea and a proposal of a new species,Glugea plecoglossi (in Japanese). Fish Path 11:175–182

    Google Scholar 

  • Takvorian PM, Cali A (1994) Enzyme histochemical identification of the Golgi apparatus in the microsporidian,Glugea stephani. J Euk Microbiol 41(Suppl):63S-64S

    Google Scholar 

  • Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414

    Google Scholar 

  • Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J (1990) Identification of an actin-binding protein fromDictyostelium as elongation factor 1a. Nature 347:494–496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Sequence availability: The nucleotide sequence data reported here appear in the GSDB, DDBJ, EMBL, and NCBI databases with the accession number D32139

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamaishi, T., Hashimoto, T., Nakamura, Y. et al. Protein phylogeny of translation elongation factor EF-1α suggests microsporidians are extremely ancient eukaryotes. J Mol Evol 42, 257–263 (1996). https://doi.org/10.1007/BF02198852

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198852

Key words

Navigation