Skip to main content
Log in

Parallel origins of the nucleosome core and eukaryotic transcription from Archaea

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Computational sequence analysis of 10 available archaean histone-like proteins has shown that this family is not only divergently related to the eukaryotic core histones H2A/B, H3, and H4, but also to the central domain of subunits A and C of the CCAAT-binding factor (CBF), a transcription factor associated with eukaryotic promoters. Despite the low sequence identity, it is unambiguously shown that the core histone fold shares a common evolutionary history. Archaean histones and the two CBF families show a remarkable variability in contrast to eukaryotic core histones. Conserved residues shared between families are identified, possibly being responsible for the functional versatility of the core histone fold. The H4 subfamily is most similar to archaean proteins and may be the progenitor of the other core histones in eukaryotes. While it is not clear whether archaean histones are more actively involved in transcription regulation, the present observations link two processes, nucleosomal packing and transcription in a unique way. Both these processes, evidently hybrid in Archaea, have originiated before the ermergence of the eukaryotic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams CC, Workman JL (1993) Nucleosome displacement in transcription. Cell 72:305–308

    Google Scholar 

  • Agha-Amiri K, Klein A (1993) Nucleotide sequence of a gene encoding a histone-like protein in the archaeonMethanococcus voltae. Nucleic Acids Res 21:1491

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Arents G, Burlingame RW, Wang B-C, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad Sci USA 88:10148–10152

    Google Scholar 

  • Arents G, Moudrianakis EN (1993) Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci USA 90:10489–10493

    Google Scholar 

  • Baumann H, Knapp S, Karshikoff A, Ladenstein R, Härd T (1995) DNA-binding surface of the Sso7d protein fromSulfolobus solfataricus. J Mol Biol 247:840–846

    Google Scholar 

  • Baxevanis AD, Arents G, Moudrianakis EN, Landsman D (1995) A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res 23:2685–2691

    Google Scholar 

  • Brown JR, Doolittle WF (1995) Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA 92:2441–2445

    Google Scholar 

  • Brown JW, Daniels CJ, Reeve JN (1989) Gene structure, organization, and expression in archaebacteria. CRC Crit Rev Microbiol 16:287–338

    Google Scholar 

  • Casari G, Sander C, Valencia A (1995) A method to predict functional residues in proteins. Nat Struct Biol 2:171–178

    Google Scholar 

  • Chodosh LA, Baldwin AS, Carthew RW, Sharp PA (1988) Human CCCAATT-binding proteins have heterologous subunits. Cell 53:11–24

    Google Scholar 

  • Darcy TJ, Sandman K, Reeve JN (1995)Methanobacterium formicicum, a mesophilic methanogen, contains three Hfo Histones. J Bacteriol 177:858–860

    Google Scholar 

  • DeLange RJ, Williams LC, Searcy DG (1981) A histone-like protein (HTa) fromThermoplasma acidophilum. II. Complete amino acid sequence. J Biol Chem 256:905–911

    Google Scholar 

  • Doolittle RF (1995) Of archae and eo: what's in a name? Proc Natl Acad Sci USA 92:2421–2423

    Google Scholar 

  • Dorn A, Bollekens J, Staub A, Benoist C, Mathis D (1987) A multiplicity of CCAAT box-binding proteins. Cell 50:863–872

    Google Scholar 

  • Durrin L, Mann R, Kayne P, Grunstein M (1991) Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65:1023–1031

    Google Scholar 

  • Fedor MJ (1992) Chromatin structure and gene expression. Curr Opin Cell Biol 4:436–443

    Google Scholar 

  • Gibson TJ, Thompson JD, Heringa J (1993) The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NusA and is probably involved in binding to nucleic acid. FEBS Lett 324:361–366

    Google Scholar 

  • Gribskov M, Luethy R, Eisenberg D (1990) Profile analysis. Methods Enzymol 183:146–159

    Google Scholar 

  • Grunstein M (1990) Histone function in transcription. Annu Rev Cell Biol 6:643–678

    Google Scholar 

  • Hahn S, Pinkham J, Wei R, Miller R, Guarente L (1988) The HAP3 regulatory locus ofSaccharomyces cerevisiae encodes divergent overlapping transcripts. Mol Cell Biol 8:655–663

    Google Scholar 

  • Hooft van Huijsduijnen R, Li XY, Black D, Matthes H, Benoist C, Mathis D (1990) Co-evolution from yeast to mouse: cDNA cloning of the two NF-Y (CP-1/CBF) subunits. EMBO J 9:3119–3127

    Google Scholar 

  • Inostroza JA, Mermelstein FH, Ha I, Lane WS, Reinberg D (1992) Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70:477–489

    Google Scholar 

  • Keeling PJ, Charlebois RL, Doolittle WF (1995) Archaebacterial genomes: eubacterial form and eukaryotic content. Curr Opin Genet Dev 4:816–822

    Google Scholar 

  • Kerrigan LA, Kadonaga JT (1992) Periodic binding of individual core histones to DNA: inadvertent purification of the core histone H2B as a putative enhancer-binding factor. Nucleic Acids Res 20:6673–6680

    Google Scholar 

  • Klenk H-P, Doolittle WF (1994) Archaea and eukaryotes versus bacteria? Curr Biol 4:920–922

    Google Scholar 

  • Kyrpides N, Ouzounis C (1995) The eubacterial transcriptional activator Lrp is present in the ArchaeonPyrococcus furiosus. Trends Biochem Sci 20:140–141

    Google Scholar 

  • Li XY, Mantovani R, Hooft van Huijsduijnen R, Andre I, Benoist C, Mathis D (1992) Evolutionary variation of the CCCAATT-binding transcription factor NF-Y. Nucleic Acids Res 20:1087–1091

    Google Scholar 

  • Maire P, Wuarin J, Schibler U (1989) The role of cis-elements in tissue specific albumin gene expression. Science 246:343–346

    Google Scholar 

  • Maity SN, Sinha S, Ruteshouser CE, de Crombrugghe B (1992) Three different polypeptides are necessary for DNA binding of the mammalian heteromeric CCAAT binding factor. J Biol Chem 267:16574–16580

    Google Scholar 

  • Maity SN, Golumbek PT, Karsenty G, de Crombrugghe B (1988) Selective activation of transcription by a novel CCAAT binding factor. Science 241:582–585

    Google Scholar 

  • Musgrave DR, Sandman KM, Reeve JN (1991) DNA binding by the archaeal histone Hmf results in positive supercoiling. Proc Natl Acad Sci USA 88:10397–10401

    Google Scholar 

  • Ouzounis C, Kyrpides N, Sander C (1995) Novel protein families in archaean genomes. Nucleic Acids Res 23:565–570

    Google Scholar 

  • Pruss D, Hayes J, Wolffe A (1995) Nucleosomal anatomy—where are the histones? Bioessays 17:161–170

    Google Scholar 

  • Ramakrishnan V (1994) Histone structure. Curr Opin Struct Biol 4:44–50

    Google Scholar 

  • Reeck GR, Swanson E, Teller DC (1978) The evolution of histones. J Mol Evol 10:309–317

    Google Scholar 

  • Sandman K, Perler FB, Reeve JN (1994a) Histone-encoding genes fromPyrococcus: evidence for members of the Hmf family of archaeal histones in a non-methanogenic Archaeon. Gene 150:207–208

    Google Scholar 

  • Sandman K, Grayling RA, Dobrinski B, Lurz R, Reeve JN (1994b) Growth-phase dependent synthesis of histones in the archaeonMethanothermus fervidus. Proc Natl Acad Sci USA 91:12624–12628

    Google Scholar 

  • Sandman K, Krzycki JA, Dobrinski B, Lurz R, Reeve JN (1990) HMf, a DNA-binding protein isolated from the hyperthermophilic archaeonMethanothermus fervidus, is most closely related to histones. Proc Natl Acad Sci USA 87:5788–5791

    Google Scholar 

  • Schwabe JWR, Travers AA (1993) What is evolution playing at? Curr Biol 3:628–630

    Google Scholar 

  • Sinha S, Maity SR, Lu J, de Crombrugghe B (1995) Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-C and with yeast HAP2 and HAP3. Proc Natl Acad Sci USA 92:1624–1628

    Google Scholar 

  • Svaren J, Hoerz W (1993) Histones, nucleosomes and transcription. Curr Opin Genet Dev 3:219–225

    Google Scholar 

  • Tabassum R, Sandman KM, Reeve JN (1992) Hmt, a histone-related protein fromMethanobacterium thermoautotrophicum ΔH. J Bacteriol 174:7890–7895

    Google Scholar 

  • Thatcher TH, Gorovsky MA (1994) Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res 22:174–179

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Google Scholar 

  • Vuorio T, Maity SN, de Crombrugghe B (1990) Purification and molecular cloning of the “A” chain of a rat heteromeric CCAAT-binding protein. Sequence identity with the yeast HAP3 transcription factor. J Biol Chem 265:22480–22486

    Google Scholar 

  • Wells D, Brown D (1991) Histone and histone gene compilation and alignment update. Nucleic Acids Res 19(suppl):2173–2176

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouzounis, C.A., Kyrpides, N.C. Parallel origins of the nucleosome core and eukaryotic transcription from Archaea. J Mol Evol 42, 234–239 (1996). https://doi.org/10.1007/BF02198849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02198849

Key words

Navigation