Skip to main content
Log in

Problems of ontogeny and phylogeny in brain-size evolution

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Fundamental ambiguities in the interpretation of brain/body allometric trends can only be resolved by analyzing relationships between ontogenetic brain/body growth processes in different groups. The ambiguous concept of adult encephalization confuses at least three distinct types of transformation of a common mammalian growth curve: scalar magnification, total curve didplacement, and changes in proportions of the pre- and postnatal phases of the curve. The conservative ratio between pre- and postnatal growth phases determines the apparent linearity of comparative brain/body allometry and can be explained by assuming that embyological neurogenetic processes ultimately determine both target brain and body size—the first directly and the second indirectly via neurohormonal regulation of somatic growth. Uneven taxonomic distribution of different ontogenetic growth patterns may explain many differences in the allometric trends at different taxonomic levels of analysis. The human brain grows exactly as if it was in a giant ape body; however, because of decoupled growth in different brain regions, it regulates body growth as though it were the size of a chimpanzee brain. Human encephalization exhibits an ontogenetic transformation not found in other mammalian groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony, R. (1928).Anatome comparée du cerveau, Dion, Paris.

    Google Scholar 

  • Armstrong, E. (1983). Relative brain size and metabolism in mammals.Science 220: 1302–1304.

    Google Scholar 

  • Atallah, M. T., Barbeau, I. S., and Pellett, P. L. (1977). Metabolic and development changes in growing rats born to dams restricted in protein and/or energy intake.J. Nutr. 107: 650–655.

    Google Scholar 

  • Atchley, W. R. (1984). The effect of selection on brain and body size association in rats.Genet. Res. 43: 289–298.

    Google Scholar 

  • Bauchot, R., (1982). Brain organization and taxonomic relationships in insectivora and primates. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.

    Google Scholar 

  • Bauchot, R., Bauchot, M.-L., Platel, R., and Ridet, J. M. (1977). Brains of Hawaiian tropical fishes: Brain size and evolution.Copeia 1: 42–46.

    Google Scholar 

  • Bauchot, R., Platel, R., and Ridet, J. M. (1976). Brain-body weight relationships in Selachii.Copeia 3: 305–310.

    Google Scholar 

  • Bauchot, R., and Guerstein, M.-M. (1970). Evolution de la taille et de la densité neuronique au cours de la croissance postnatal chez le rat blanc,Rattus norvegicus (Berkenhout).J. Hirnforsch. 12: 255–265.

    Google Scholar 

  • Bauchot, R., Ridet, J. M., and Bauchot, M. L. (1979) Encephalization and evolutionary level in aquatic vertebrates.Vie Milieu ser ab Biol Mar Oceanogr. 197: 253–266.

    Google Scholar 

  • Bennett, P. M., and Harvey, P. H. (1985). Brain size, development and metabolism in birds and mammals.J. Zool., Lond. 207: 491–509.

    Google Scholar 

  • Bolk, L. (1926). On the problem of anthropogenesis.Proc. Section Sciences Kon. Akad. Wetens. Amsterdam 29: 465–475.

    Google Scholar 

  • Brandt, A. (1867). Sur le rapport du poids du cerveau á celui du corps chez différents animaux.Bull. Soc. Imp. Natur. Moscow 40: 525–543.

    Google Scholar 

  • Calder, W. III (1984).Size, Function and Life History, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Count, E. W. (1947). Brain and body weight in man: Their antecedents in growth and evolution.Ann. N.Y. Acad. Sci. 46: 993–1122.

    Google Scholar 

  • Cowan, W. M., Fawcett, J. W., O'Leary, D. D. M., and Stanfield, B. B. (1984). Regressive events in neurogenesis.Science 255: 1258–1265.

    Google Scholar 

  • de Beer, G. R. (1958).Embryos and Ancestors, Clarendon Press, Oxford.

    Google Scholar 

  • Deacon, T. W. (1984). Connections of the inferior periarcuate area in the brain ofMacaca fascicularis: An experimental and comparative investigation of language circuitry and its evolution, Ph.D. thesis, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Deacon, T. W. (1988). Human brain evolution: II. Embryology and brain allometry. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Deacon, T. W. (1990). Fallacies of progression in brain size evolution.Int. J. Primatol. (this volume).

  • Delphini, C., Platel, R., and Raffin, J.-P. (1973). Relations pondérales encéphalo-somatiques chez le poussin et l'adult de Goéland (Goéland argenté et goéland brun).C. r., hebd. Scéanc. Acad. Sci. Paris 277: 213–216.

    Google Scholar 

  • Dobbing, J., and Sands, J. (1973). Quantitative growth and development of human brain.Archives of Diseases in Childhood 48: 757–767.

    Google Scholar 

  • Douglas, R. J., and Marcellus, D. (1975). The ascent of man: Deductions based on a multivariate analysis of the brain.Brain Behav. Evol. 11: 179–213.

    Google Scholar 

  • Dubois, E. (1913). On the relation between the quantity of brain and the size of the body in vertebrates.Verh. Kon. Akad. Wetenschappen Amsterdam 16: 647.

    Google Scholar 

  • Dubois, E. (1923). Phylogenetic and ontogenetic increase of the volume of the brain in the vertebrata.Proc. Kon. Akad. Wetenschappen Amsterdam 25: 235–255.

    Google Scholar 

  • Ebbesson, S. O. (1980). The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity.Cell Tissue Res. 213: 179–212.

    Google Scholar 

  • Finlay, B. L., and Slattery, M. (1983). Local differences in early cell death in neocortex predict adult local specializations.Science 219: 1349–1351.

    Google Scholar 

  • Finlay, B. L., Wikler, K. C., and Sengelaub, D. R. (1987). Regressive events in brain development and scenarios for vertebrate brain evolution.Brain Behav. Evol. 30: 102–117.

    Google Scholar 

  • Frost, D. O., and Metin, C. (1985). Induction of functional retina projections to the somatosensory system.Nature, Lond. 317: 162.

    Google Scholar 

  • Fuller, J. L. (1979). Fuller BWS lines: History and results. In Hahn, M. E., Jensen, C. and Dudek, B. C. (eds.),Development and Evolution of Brain Size, Academic Press, New York.

    Google Scholar 

  • Gelvin, B. R., and Albrecht, G. H. (1987). Brain weight/body weight scaling in primates: Assumptions, problems, and alternative solutions.Am. J. Phys. Anthrop. 72: 202.

    Google Scholar 

  • Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny.Biol. Rev. 41: 587–640.

    Google Scholar 

  • Gould, S. J. (1971). Geometric scaling in allometric growth: A contribution to the problem of scaling in the evolution of size.Am. Nat. 105: 113–136.

    Google Scholar 

  • Gould, S. J. (1975). Allometry in primates with emphasis of scaling and the evolution of the brain.Contr. Primatol. 5: 244–292.

    Google Scholar 

  • Gould, S. J. (1977).Ontogeny and Phylogeny, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Gould, S. J. (1981).The Mismeasure of Man, George J. McLeod Ltd., Toronto.

    Google Scholar 

  • Harvey, P. H. (1988). Allometric analysis and brain size. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Haug, H. (1987). Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant).Am. J. Anat. 180: 126–142.

    Google Scholar 

  • Hofman, M. A. (1983). Evolution of brain size in neonatal and adult placental mammals: A theoretical approach.J. Theor. Biol. 105: 317–332.

    Google Scholar 

  • Hofman, M. (1984). Energy metabolism and relative brain size in human neonates from single and multiple gestations: An allometric study.Biol. Neonate 45: 157–164.

    Google Scholar 

  • Holloway, R. L. (1979). Brain size, allometry, and reorganization: Toward a synthesis. In Hahn, M., Jensen, C., and Dudek, B. (eds.),Development and Evolution of Brain Size, Academic Press, New York.

    Google Scholar 

  • Holloway, R. L. (1980). Within-species brain-body weight variability: A reexamination of the Danish data and other primate species.Am. J. Phys. Anthropol. 53: 109–121.

    Google Scholar 

  • Holloway, R. L., and Post, D. G. (1982). The relativity of relative brain measures and hominid mosaic evolution. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.

    Google Scholar 

  • Holt, A. B., Cheek, D. B., Mellits, E. D., and Hill, D. E. (1975). Brain size and the relation of the primate to the nonprimate. In Cheek, D. B. (ed.),Fetal and Postnatal Cellular Growth: Hormones and Nutrition, John Wiley, New York.

    Google Scholar 

  • Huxley, J. (1932).Problems of Relative Growth, Methuen, London.

    Google Scholar 

  • Jacobson, M. (1978).Developmental Neurobiology, Plenum Press, New York.

    Google Scholar 

  • Jerison, H. J. (1970). Brain evolution: New light on old principles.Science 170: 1224–1225.

    Google Scholar 

  • Jerison, H. J. (1973).Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Katz, J. M., and Lasek, R. J. (1983). Evolution of the nervous system: Role of ontogenetic mechanisms in the evolution of matching populations.Proc. Natn. Acad. Sci. USA 75: 1349–1352.

    Google Scholar 

  • Kieth, A. (1949). Foetalization as a factor in human evolution. In Kieth, A. (ed.),A New Theory of Human Evolution, Watts, London.

    Google Scholar 

  • Kleiber, M. (1961).The Fire of Life: An Introduction to Animal Energetics, John Wiley, New York.

    Google Scholar 

  • Kruska, D. (1987). How fast can total brain size change in mammals?J. Hirnforsch. 28: 59–70.

    Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry.Evolution 33: 402–416.

    Google Scholar 

  • Lande, R. (1985). Genetic and evolutionary aspects of allometry. In Jungers, W. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • Lapicque, L. (1898). Sur la relation du poids de l'encéphale au poids du corps (chez le chien).Compt. rend. Soc. Biol. Paris 50: 62.

    Google Scholar 

  • Lapicque, L. (1907). Tableau generale des poids somatique et encephalique dans les especes animales.Bulletins de la Societe d'Anthropologie de Paris 8: 248–262.

    Google Scholar 

  • Latimer, H. B. (1938). The prenatal growth of the cat. VII. The growth of the brain and of its parts, etc.J. Comp. Neurol. 68: 381–394.

    Google Scholar 

  • Leutenegger, W. (1976). Allometry of neonatal size in eutherian mammals.Nature, Lond. 263: 229–230.

    Google Scholar 

  • Leutenegger, W. (1982). Encephalization and obstetrics in primates with particular reference to human evolution. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.

    Google Scholar 

  • Mace, G. M., Harvey, P. H., and Clutton-Brock, T. H. (1980). Is brain size an ecological variable?Trends Neuro. Sci. 3: 193–196.

    Google Scholar 

  • MacPhail, E. (1982).Brain and Intelligence in Vertebrates, Clarendon Press, Oxford.

    Google Scholar 

  • Manouvrier, L. (1885). Sur l'interprétation de la quantité dans l'encéphale et dans le cerveau en particulier.Bull. Soc. Anthrop. Paris (Ser. 2) 3: 137–323.

    Google Scholar 

  • Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates.Nature, Lond. 293: 57–60.

    Google Scholar 

  • Martin, R. D. (1982). Allometric approaches to the evolution of the primate nervous system. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.

    Google Scholar 

  • Martin, R. D. (1983). Human brain evolution in an ecological context.Fifty-Second James Arthur Lecture on the Evolution of the Human Brain. American Mus. Nat. Hist., New York.

  • Martin, R. D., and Harvey, P. H. (1985). Brain size allometry: Ontogeny and phylogeny. In Jungers, W. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • Montagu, M. F. A. (1962). Time, morphology and neoteny in the evolution of man. In Montagu, M. F. A. (ed.),Culture and the Evolution of Man, Oxford University Press, New York.

    Google Scholar 

  • Pagel, M. P., and Harvey, P. H. (1988). The taxon-level problem in the evolution of mammalian brain size: Facts and artifacts.Am. Nat. 132: 344–359.

    Google Scholar 

  • Pagel, M. P., and Harvey, P. H. (1989). Taxonomic differences in the scaling of brain on body weight among mammals.Science 244: 1589–1593.

    Google Scholar 

  • Passingham, R. E. (1975). Changes in the size and organisation of the brain in man and his ancestors.Brain Behav. Evol. 11: 73–90.

    Google Scholar 

  • Platel, R. (1975). Encéphalisation et sexe chez les reptiles squamates.Bull. Soc. Zool. France 100: 621–631.

    Google Scholar 

  • Platel, R. (1979). Brain weight and body weight relationships. In Gans, C., Northcutt, R. G., and Ulinski, P. (eds.),Biology of Reptilia, Academic Press, New York.

    Google Scholar 

  • Platel, R., and Bauchot, R. (1970). L'encéphale deScincus scincus (L.) Reptilia, Sauria (Scincidae). Recherche d'une grandeur de référence pour des études quantitatives.Zool. Anz. 184: 33–47.

    Google Scholar 

  • Platel, R., Bauchot, R., and Delphini, C. (1972). Les relations pondérales encéphalo-somatiques chezGallu domesticus L. (Galliformes, Phasianidae). Analyse au cours de l'incubation et de la période postnatale.Z. wiss. Zool. 185: 88–104.

    Google Scholar 

  • Purves, D., and Lichtman, J. W. (1980). Elimination of synapses in the developing nervous system.Science 210: 153–157.

    Google Scholar 

  • Ridet, J. M., Bauchot, R., Diagne, M., and Platel, R. (1976). Croissances ontogenetique et phylogenetique de l'encéphale des Teleosteens.Rev. Trav. Inst. Peches Maritimes 40: 727–728.

    Google Scholar 

  • Rakic, P. (1988). Specification of cerebral cortical areas.Science 241: 170–176.

    Google Scholar 

  • Riska, B., and Atchley, W. R. (1985). Genetics of growth predict patterns of brain size evolution.Science 229: 668–671.

    Google Scholar 

  • Riska, B., Atchley, W. R., and Rutledge, J. J. (1984). A genetic analysis of targeted growth in mice.Genetics 107: 79–101.

    Google Scholar 

  • Roderick, T. H., Wimer, R. E., and Wiomer, C. C. (1976). Genetic manipulation of neuroanatomical traits. In Petrinovich, L., and McGaugh, J. L. (eds.),Knowing, Thinking and Believing, Plenum Press, New York.

    Google Scholar 

  • Sacher, G. (1959). Relation of lifespan to brain weight and body weight in mammals, In Wolstenholme, G. E. W., and O'Connor, M. (eds.),Ciba Foundation Colloquia on Aging, Vol. 5, The Lifespan of Animals, Churchill, London.

    Google Scholar 

  • Sacher, G. A. (1970). Allometric and factorial analysis of brain structure in insectivores and primates. In Novack, C. R., and Montagna, W. (eds.),The Primate Brain: Advances in Primatology, Appleton Century Crofts, New York.

    Google Scholar 

  • Sacher, G. A. (1982). Brain maturation in the evolution of primates. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.

    Google Scholar 

  • Sacher, G. A., and Staffeldt, E. F. (1974). Relation of gestation time to brainweight for placental mammals: Implications for the theory of vertebrate growth.Am. Nat. 108: 593–615.

    Google Scholar 

  • Snell, O. (1891). Das Gewicht de Gehirns und des Hirnmantels der Saugetiere in Beziehung zu deren geistigen Fahigkeiten.Sitz. Gex. Morph. Physiol. Munchen 7: 90–94.

    Google Scholar 

  • Snell, O. (1892). Die Abhangigkeit des Hirngewichtes von dem Korpergewicht und den geistigen Fahigkeiten.Archiv fur Psychiatrie 23: 436–446.

    Google Scholar 

  • Stephan, H., Frahm, H., and Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates.Folia Primatol. 35: 1–29.

    Google Scholar 

  • Thireau, M., Bauchot, R., Platel, R., and Ridet, J. M. (1973). L'encéphale deSalamandra salamandra fastuoso Lacèpéde, 1788 (Amphibia, Caudata, Salamandridae). Étude prálable à des recherches de neuroanatomie quantitative.Bull. Mus. Hist. nat., Paris 106: 49–65.

    Google Scholar 

  • Widdowson, E. M. (1981). Growth of creatures great and small.Symp. Zool. Soc. Lond. 46: 5–17.

    Google Scholar 

  • Williams, R. W., and Herrup, K. (1988). The control of neuron number.Ann. Rev. Neurosci. 11: 423–453.

    Google Scholar 

  • Wingert, F. (1969). Biometrische Analyse der Wachtumsfunktionen von Hirntielen und Körpergewicht der Albinomaus.J. Hirnforsch. 11: 133–197.

    Google Scholar 

  • Zamenhof, S., and Ahmad, G. (1979). The effects of exogenous nutrients on growth of chick embryo brain.Growth 43: 160–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deacon, T.W. Problems of ontogeny and phylogeny in brain-size evolution. International Journal of Primatology 11, 237–282 (1990). https://doi.org/10.1007/BF02192870

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02192870

Key Words

Navigation