Skip to main content
Log in

Fallacies of progression in theories of brain-size evolution

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The tacit assumption that relative enlargement and differentiation of brains reflect a progressive evolutionary trend toward greater intelligence is a major impediment to the study of brain evolution. Theories that purport to establish a linear scale for this presumed correlation between brain size and intelligence are undermined by the absence of an unbiased allometric baseline for estimating differences in encephalization, by the incompatibility of allometric analyses at different taxonomic levels, by the nonlinearity of the ‘criterion of subtraction” used to partition the somatic and cognitive components of encephalization, and by the failure to independently demonstrate any cognitive basis for the regularity of brain/body allometry. Analyzing deviations from brain/body allometric trends in terms of “encephalization” obfuscates the complementarity between brain and body size and ignores selection on body size, which probably determines most deviations. By failing to analyze the effects of allometry at many levels of structure, comparative anatomists have mistaken methodological artifacts for progressive evolutionary trends. Many structural changes, which are assumed to demonstrate progression of brain structure from primitive to advanced forms, are the results of allometric processes. Increased brain size turns out to have some previously unappreciated functional disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbie, A. A. (1940). Cortical lamination in the monotremata.J. Comp. Neurol. 72: 428–467.

    Google Scholar 

  • Albrecht, G. H., and Gelvin, B. R. (1987). The simple allometry equation reconsidered: Assumptions, problems, and alternative solutions.Am. J. Phys. Anthrop. 72: 174.

    Google Scholar 

  • Armstrong, E. (1982). A look at relative brain size in mammals.Neurosci. Lett. 34: 101–104.

    Google Scholar 

  • Armstrong, E. (1983). Relative brain size and metabolism in mammals.Science 220: 1302–1304.

    Google Scholar 

  • Bauchot, R. (1978). Encephalization in vertebrates: A new mode of calculation for allometry coefficients and isoponderal indices.Brain Behav. Evol. 15: 1–18.

    Google Scholar 

  • Bauchot, R., and Stephan, H. (1966). Données nouvelles sur l'encéphalisation des insectivores et des prosimiens.Mammalia 30: 160–196.

    Google Scholar 

  • Bennett, P. M., and Harvey, P. H. (1985). Brain size, development and metabolism in birds and mammals.J. Zool. Lond. 207: 491–509.

    Google Scholar 

  • Blinkov, S. M., and Glezer, I. I. (1968).The Human Brain in Figures and Tables, Plenum Press, New York.

    Google Scholar 

  • Bok, S. T. (1959).Histonomy of the Cerebral Cortex, Van Nostrand-Reinhold, Princeton.

    Google Scholar 

  • Bok, S. T., and van Erp Taalman Kip, M. J. (1939). The size of the body and the size and number of nerves cells in the cerebral cortex.Acta Neerl. Morphol. 3: 1–22.

    Google Scholar 

  • Broca, P. (1861). Sur le volume et la forme du cerveau suivant les individus et suivant les races.Bulletin Société d'Anthropologie Paris 3: part 2, 13 pp.

  • Broca, P. (1862). Sur les projections de les tête et sur un nouveau procédé de céphalométrie.Bulletin Société d'Anthropologie Paris 3: 32 pp.

    Google Scholar 

  • Broca, P. (1873). Sur la mensuration de la capacité du crâne.Memoire Société d'Anthropologie, 2nd series, 1: 92 pp.

  • Brummelkamp, R. (1940). Brain weight and body size: A study of the cephalization problem.Verh. Kongr. nederl. Akad. Wetensch. 39: 1–57.

    Google Scholar 

  • Calder, W., III (1984),Size, Function and Life History, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Campbell, A. (1905).Histological Studies on the Localization of Cerebral Functions, Cambridge University Press, Cambridge.

    Google Scholar 

  • Clutton-Brock, T. H., and Harvey, P. H. (1977). Primate ecology and social organization.J. Zool. Lond. 183: 1–39.

    Google Scholar 

  • Clutton-Brock, T. H., and Harvey, P. H. (1980). Primates, brains and ecology.J. Zool. Lond. 190: 309–324.

    Google Scholar 

  • Count, E. W. (1947). Brain and body weight in man: Their antecedents in growth and evolution.Ann. N.Y. Acad. Sci. 46: 993–1122.

    Google Scholar 

  • Dart, R. (1934). The dual structure of the neopallium: Its history and significance.J. Anat. 69: 3–19.

    Google Scholar 

  • Deacon, T. W. (1984). Connections of the inferior periarcuate area in the brain ofMacaca fascicularis: An experimental and comparative investigation of language circuitry and its evolution. Ph.D. thesis, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Deacon, T. W. (1988a). Human brain evolution: I. Evolution of language circuits. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Deacon, T. W. (1988b) Human brain evolutions: II. Embryology and brain allometry. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Berlag, Berlin.

    Google Scholar 

  • Deacon, T. W. (1990a). Confusing size correlated differences with phylogenetic “progression” in brain evolution.Behav. Brain Sci. 13: 185–187. [Commentary for the target article by Glezer, I., Morgane, P., and Jacobs, M. (1988). Implications of the initial brain concept for brain evolution in cetacea.Behav. Brain Sci. 11: 75–116.]

    Google Scholar 

  • Deacon, T. W. (1990b). Problems of ontogeny and phylogeny in brain size evolution.Int. J. Primatol. (this vol.)

  • Deacon, T. W., Sokoloff, A., and Wecht, D. (1987). Circular organization of connections linking midbrain areas, sections of the mediodorsal thalamus, and prefrontal areas in the rat.Soc. Neurosci. Abstracts 13:304–9.

    Google Scholar 

  • Diamond, I. T. (1979). The subdivisions of the neocortex: A proposal to revise the traditional view of sensory, motor and association areas. In Sprague, J., and Epstein, A. (es.),Progress in Psychobiology and Physiological Psychology, Vol. 8, Academic Press, New York.

    Google Scholar 

  • Diamond, I. T. (1982). The functional significance of architectonic divisions of the cortex, Lashley's criticism of the traditional view. In Orbach, J. (ed.),Neuropsychology after Lashley, Lawrence Erlbaum Associates, New Jersey.

    Google Scholar 

  • Dubois, E. (1997) Über die Abhangigkeit des Hirngewichtes von der Korpergrosse bei den Säugetieren.Arch. Anthrop. 25: 1–28.

    Google Scholar 

  • Dubois, E. (1898). Über die Abhangigkeit des Hirngewichtes von der Korpergrosse beim Menschen.Arch. Anthrop. 25: 423–441.

    Google Scholar 

  • Dubois, E. (1913). On the relation between the quantity of brain and the size of the body in vertebrates.Verh. Kongr. Akad. Wetensch. 16: 647.

    Google Scholar 

  • Dubois, E. (1923). Phylogenetic and ontogenetic increase of the volume of the brain in the vertebrata.Verh. Kongr. Akad. Wetensch. 25: 235–255.

    Google Scholar 

  • Ebbesson, S. O. (1980). The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity.Cell Tissue Res. 213: 179–212.

    Google Scholar 

  • Economo, C. (1926). Koeffizient für Organizationshohe der Grosshirnrinde.Klin. Wochschr. 5: 525.

    Google Scholar 

  • Eisenberg, J. F. (1981).The Mammalian Radiations: A Study in Evolution and Adaptation, University of Chicago Press, Chicago.

    Google Scholar 

  • Eisenberg, J. F., and Wilson, D. E. (1978). Relative brain size and feeding strategies in the Chiroptera.Evolution 32: 740–751.

    Google Scholar 

  • Elliot-Smith, G. (1910). Some problems related to the evolution of the brain.Lancet 1: 1–6, 147–153, 221–227.

    Google Scholar 

  • Fleagle, J. G. (1985). Size and adaptation in primates. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 1–20.

    Google Scholar 

  • Flechsig, P. (1900). Über Projections und Associations Zentren des menschlichen Gehirns. [On projection and association centers of the human brain.]Neurologie Zentralblatt 19.

  • Flechsig, P. (1901). Developmental (myelogenetic) localization of the cerebral cortex in the human subject.Lancet 2: 1027–1029.

    Google Scholar 

  • Fox, J. H., and Wilczynski, W. (1986). Allometry of major CNS divisions: Towards a reevaluation of somatic brain-body scaling.Brain Behav. Evol. 28: 157–169.

    Google Scholar 

  • Friede, R. L. (1953). Gliaindex und Hirnstoffwechsel.Wien. Z. Nervenheilk, 7: 143–151.

    Google Scholar 

  • Galaburda, A. M. and Pandya, D. N. (1983). The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey.J. Comp. Neurol. 221: 169–184.

    Google Scholar 

  • Galaburda, A. and Sanides, F. (1980). Cytoarchitectonic organization of the human auditory cortex.J. Comp. Neurol. 190: 597–610.

    Google Scholar 

  • Gelvin, B. R., and Albrecht, G. H. (1987). Brain weight/body weight scaling in primates: Assumptions, problems, and alternative solutions.Am. J. Phys. Anthrop. 72: 202.

    Google Scholar 

  • Glezer, I., Morgane, P., and Jacobs, M. (1988). Implications of the initial brain concept for brain evolution in cetacea.Behav. Brain Sci. 11: 75–116.

    Google Scholar 

  • Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny.Biol. Rev. 41: 587.

    Google Scholar 

  • Gould, S. J. (1975). Allometry in primates with emphasis of scaling and the evolution of the brain.Contr. Primatol. 5: 244–292.

    Google Scholar 

  • Gould, S. J. (1977).Ontogeny and Phylogeny, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Gould, S. J. (1981).The Mismeasure of Man, George J. McLeod, Ltd., Toronto.

    Google Scholar 

  • Hafner, M. S., and Hafner, J. C. (1984). Brain size, adaptation and heterochrony in geomyoid rodents.Evolution 38: 1088–1098.

    Google Scholar 

  • Harvey (1988). Allometric analysis and brain size. In Jerison, H. and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Haug, H. (1987). Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant).Am. J. Anat. 180: 126–142.

    Google Scholar 

  • Hladik, C. M. (1967). Surface relative du tractus digestif de quelques primates: Morphologie de villosités intestinales et correlations avec la régime alimentaire.Mammalia 31: 120–147.

    Google Scholar 

  • Hodos, W. (1987). Comparative neuroanatomy and the evolution of intelligence. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Hofman, M. A. (1982a). A two-component theory of encephalization in mammals.J. Theor. Biol. 99: 571–584.

    Google Scholar 

  • Hofman, M. A. (1982b). Encephalization in mammals in relation to the size of the cerebral cortex.Brain Behav. Evol. 20: 84–96.

    Google Scholar 

  • Hofman, M. A. (1983). Evolution of brain size in neonatal and adult placental mammals: A theoretical approach.J. Theor. Biol. 105: 317–332.

    Google Scholar 

  • Hofman, M. A. (1985). Size and shape of the cerebral cortex in mammals: I. The cortical surface.Brain Behav. Evol. 27: 28–40.

    Google Scholar 

  • Holloway, R. L. (1966). Cranial capacity, neural reorganization and hominid evolution: A search for more suitable parameters.Am. Anthrop. 68: 103–121.

    Google Scholar 

  • Holloway, R. L. (1968). The evolution of the primate brain: Some aspects of quantitative relationships.Brain Res. 7: 121–172.

    Google Scholar 

  • Holloway, R. L. (1969). Some questions on parameters of neural evolution in primates.Ann. N. Y. Acad. Sci. 167: 332–340.

    Google Scholar 

  • Holloway, R. L. (1979). Brain size, allometry, and reorganization: Toward a synthesis. In Hahn, M., Jensen, C., and Dudek, B. (eds.),Development and Evolution of Brain Size, Academic Press, New York.

    Google Scholar 

  • Holloway, R. L. (1980). Within-species brain-body weight variability: A reexamination of the Danish data and other primate species.Am. J. Phys. Anthrop. 53: 109–121.

    Google Scholar 

  • Holloway, R. L., and Post, D. G. (1982). The relativity of relative brain measures and hominid mosaic evolution. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.

    Google Scholar 

  • Holloway, R. L. (1983). Human brain evolution: A search for units, models and synthesis.Canad. J. Anthrop. 3: 215–232.

    Google Scholar 

  • Huxley, J. (1932).Problems of Relative Growth, Methuen, London.

    Google Scholar 

  • Jacobson, M. (1978).Developmental Neurobiology, Plenum Pless, New York.

    Google Scholar 

  • Jerison, H. J. (1955). Brain to body ratios and the evolution of intelligence.Science 121: 447–449.

    Google Scholar 

  • Jerison, H. J. (1973).Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Jerison, H. J. (1977). The theory of encephalization.Ann. N.Y. Acad. Sci. 299: 146–160.

    Google Scholar 

  • Jerison, H. J. (1982). Allometry, brain size, cortical surface, and convolutedness. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution, Plenum Press, New York.

    Google Scholar 

  • Jerison, H. J. (1988). The evolutionary biology of intelligence: Afterthoughts. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Kay, R. F. (1984). On the use of anatomical features to infer foraging behavior in extinct primates. In Cant, J., and Rodman, P. (eds.),Adaptations for Foraging in Nonhuman Primates, Columbia University Press, New York, pp. 21–53.

    Google Scholar 

  • Kaas, J. H. (1987). The organization and evolution of neocortex. In Wise, S. P. (ed.),Higher Brain Functions: Recent Explorations of the Brain's Emergent Properties, John Wiley & Sons, New York.

    Google Scholar 

  • Kaas, J. H. (1989). Why does the brain have so many visual areas?J. Cog. Neurosci. 1: 121–135.

    Google Scholar 

  • Kleiber, M. (1947). Body size and metabolic rate.Physiol. Rev. 27: 511–541.

    Google Scholar 

  • Kleiber, M. (1961).The Fire of Life: An Introduction to Animal Energetics, John Wiley, New York.

    Google Scholar 

  • Kruska, D. (1988). Mammalian domestication and its effect on brain structure and behavior. In Jerison, H., and Jerison, I. (eds.),Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Lande, R. (1985). Genetic and evolutionary aspects of allometry. In Jungers, W. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • Lapicque, L. (1907). Tableau generale des poids somatique et encephalique dans les especes animales.Bull. Mem. Soc. Anthrop. Paris 8: 248–262.

    Google Scholar 

  • Lapicque, L. (1908). Le poids encephalique en fonction du poids corporel entre individus d'une meme espece.Bull. Mem. Soc. Anthrop. Paris 9: 249–271.

    Google Scholar 

  • Lashley, K. (1929).Brain Mechanisms and Intelligence. University of Chicago Press, Chicago.

    Google Scholar 

  • Lashley, K. (1931). Mass action in cerebral function.Science, 73: 245–254.

    Google Scholar 

  • Mace, G. M., Harvey, P. H., and Clutton-Brock, T. H. (1981). Brain size and ecology in small mammals.J. Zool. Lond. 193: 333–354.

    Google Scholar 

  • MacPhail, E. (1982).Brain and Intelligence in Vertebrates, Clarendon Press, Oxford.

    Google Scholar 

  • Manouvrier, L. (1885). Sur l'interprétation de la quantité dans l'encéphale et dans le cerveau en particulier.Bull. Soc. Anthrop. Paris (Ser. 2) 3: 137–323.

    Google Scholar 

  • Martin, R. D. (1981). Relative brain size and basal metabolic rate in terrestrial vertebrates.Nature, Lond. 293: 57–60.

    Google Scholar 

  • Martin, R. D. (1982). Allometric approaches to the evolution of the primate nervous system. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution: Methods and Concepts, Plenum Press, New York.

    Google Scholar 

  • Martin, R. D. (1983). Human brain evolution in an ecological context: Fifty-second James Arthur Lecture on the Evolution of the Human Brain. American Museum of Natural History, New York.

    Google Scholar 

  • Martin, R. D. and Harvey, P. (1985). Brain size allometry: Ontogeny and phylogeny. In Jungers, W. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • McNab, B. K. (1980). Food habits, energetics and population biology of mammals.Am. Nat. 116: 106–124.

    Google Scholar 

  • Meyer, J. (1981). A quantitative comparison of the parts of the brains of two Australian marsupials and some eutherian mammals.Brain Behav. Evol. 18: 60–71.

    Google Scholar 

  • Pandya, D., and Seltzer, B. (1982). Association areas of the cerebral cortex.Trends Neurosci. 5: 386–390.

    Google Scholar 

  • Pandya, D., and Yeterian, E. (1985). Architecture and connections of cortical association areas. In Peters, A., and Jones, E. G. (eds.),Cerebral Cortex, Vol. 4, Association and Auditory Cortices, Plenum Press, New York.

    Google Scholar 

  • Pandya, D. N., and Sanides, F. (1973). Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern.Z. Anat. Etwickl.-Gesch. 139: 127–161.

    Google Scholar 

  • Passingham, R. E. (1975). Changes in the size and organization of the brain in man and his ancestors.Brain Behav. Evol. 11: 73–90.

    Google Scholar 

  • Pirlot, P., and Stephan, H. (1970). Encephalization in Chiroptera.Can. J. Zool. 48: 433–442.

    Google Scholar 

  • Platel, R. (1979). Brain weight and body weight relationships. In Gans, C., Northcutt, R. G., and Ulinski, P. (eds.),Biology of Reptilia, Academic Press, New York.

    Google Scholar 

  • Purves, D., and Lichtman, J. W. (1985). Geometric differences among homologous neurons in mammals.Science 228: 298–302.

    Google Scholar 

  • Rensch, B. (1956). Increase in learning ability with increase of brain size.Am. Nat. 90: 81–95.

    Google Scholar 

  • Ridet, J. M., Bauchot, R., Diagne, M., and Platel, R. (1976). Croissances ontogenetique et phylogenetique de l'encéphale des Teleosteens.Rev. Trav. Inst. Peches Maritimes 40: 727–728.

    Google Scholar 

  • Rockel, A. J., Hiorns, R. W., and Powell, T. P. S. (1980). The basic uniformity in the structure of the neocortex.Brain 103: 221–244.

    Google Scholar 

  • Sacher, G. A. (1970). Allometric and factorial analysis of brain structure in insectivores and primates. In Noback, C., and Montagna, W. (eds.),The Primate Brain: Advances in Primatology, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Sacher, G. A. (1982). Brain maturation in the evolution of primates. In Armstrong, E., and Falk, D. (eds.),Primate Brain Evolution: Methods and Concepts, Plenum Press, New York.

    Google Scholar 

  • Sanides, F. (1969). Comparative architectonics of the neocortex of mammals and their evolutionary interpretation.Ann. N.Y. Acad. Sci. 167: 404–423.

    Google Scholar 

  • Sanides, F. (1970). Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In Noback, C., and Montagna, W. (eds.),The Primate Brain: Advances in Primatology, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Sanides, F. (1978). Comparative neurology of the temporal lobe in primates including man with reference to speech.Brain and Lang. 2: 396–419.

    Google Scholar 

  • Smith, R. J. (1984). Determination of relative size: The “criterion of subtraction” problem in allometry.J. Theor. Biol. 108: 131–142.

    Google Scholar 

  • Snell, O. (1891). Das Gewicht des Gehirns und des Hirnmantels der Saugetiere in Beziehung zu deren geistigen Fahigkeiten.Sitz. Ges. Morph. Physiol. Muchen 7: 90–94.

    Google Scholar 

  • Snell, O. (1892). Die Abhangigkeit des Hirngewichtes von dem Korpergewicht und den geistigen Fahigheiten.Archiv für psychiatrie 23: 436–446.

    Google Scholar 

  • Stephan, H. (1960). Methodische Studien uber den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns.Z. Wiss. Zool. 164: 143–172.

    Google Scholar 

  • Stephan, H. (1967). Zur Enwicklungshohe Der Insektivoran nach Merkmalen des Gehirns und die Definition der “Basalen Insektivoren.”Zool. Anz. 179: 177–199.

    Google Scholar 

  • Stephan, H. (1972). Evolution of primate brains: A comparative anatomical investigation. In Tuttle, R. (ed.),The Functional and Evolutionary Biology of Primates, Aldine-Atherton, Chicago.

    Google Scholar 

  • Stephan, H., Frahm, H., and Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates.Folia Primatol. 35: 1–29.

    Google Scholar 

  • Tower, D. B. (1954). Structural and functional organization of mammalian cerebral cortex: The correlation of neuron density with brain size—Cortical density in the finwhale with a note on the cortical neurone density in the Indian elephant.J. Comp. Neurol. 101: 19–53.

    Google Scholar 

  • Van Valen, L. (1974). Brain size and intelligence in man.Am. J. Phys. Anthrop. 40: 417–424.

    Google Scholar 

  • von Bonin, G. (1937). Brain-weigh and body-weight in mammals.J. Gen. Psychol. 16: 379–389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deacon, T.W. Fallacies of progression in theories of brain-size evolution. International Journal of Primatology 11, 193–236 (1990). https://doi.org/10.1007/BF02192869

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02192869

Key Words

Navigation