Skip to main content
Log in

Abort landing in windshear: Optimal control problem with third-order state constraint and varied switching structure

  • Contributed Papers
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Optimal abort landing trajectories of an aircraft under different windshear-downburst situations are computed and discussed. In order to avoid an airplane crash due to severe winds encountered by the aircraft during the landing approach, the minimum altitude obtained during the abort landing maneuver is to be maximized. This maneuver is mathematically described by a Chebyshev optimal control problem. By a transformation to an optimal control problem of Mayer type, an additional state variable inequality constraint for the altitude has to be taken into account; here, its order is three. Due to this altitude constraint, the optimal trajectories exhibit, depending on the windshear parameters, up to four touch points and also up to one boundary arc at the minimum altitude level. The control variable is the angle of attack time rate which enters the equations of motion linearly; therefore, the Hamiltonian of the problem is nonregular. The switching structures also includes up to three singular subarcs and up to two boundary subarcs of an angle of attack constraint of first order. This structure can be obtained by applying some advanced necessary conditions of optimal control theory in combination with the multiple-shooting method. The optimal solutions exhibit an oscillatory behavior, reaching the minimum altitude level several times. By the optimization, the maximum survival capability can also be determined; this is the maximum wind velocity difference for which recovery from windshear is just possible. The computed optimal trajectories may serve as benchmark trajectories, both for guidance laws that are desirable to approach in actual flight and for optimal trajectories may then serve as benchmark trajectories both for guidance schemes and also for numerical methods for problems of optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Long, M. E.,The Air-Safety Challege, National Geographic, Vol. 152, No. 2, pp. 209–235, 1977.

    Google Scholar 

  2. Miele, A., Wang, T., Tzeng, C. Y., andMelvin, W. W.,Optimal Abort Landing Trajectories in the Presence of Windshear, Journal of Optimization Theory and Applications, Vol. 55, No. 2, pp. 165–202, 1987.

    Article  MathSciNet  Google Scholar 

  3. Grantham, W. J., andParks, E. K.,A DFW Microburst Model Based on DL-191 Data, Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, Vol. 2, pp. 695–701, 1990.

    Google Scholar 

  4. Miele, A., Wang, T., andMelvin, W. W.,Optimal Take-Off Trajectories in the Presence of Windshear, Journal of Optimization Theory and Applications, Vol. 49, No. 1, pp. 1–45, 1986.

    Article  MathSciNet  Google Scholar 

  5. Miele, A., Wang, T., andMelvin, W. W.,Guidance Strategies for Near-Optimum Take-Off Performance in a Windshear, Journal of Optimization Theory and Applications, Vol. 50, No. 1, pp. 1–47, 1986.

    Article  MathSciNet  Google Scholar 

  6. Miele, A., Wang, T., Melvin, W. W., andBowles, R. L.,Maximum Survival Capability of an Aircraft in a Severe Windshear, Journal of Optimization Theory and Applications, Vol. 53, No. 2, pp. 181–217, 1987.

    Article  Google Scholar 

  7. Miele, A., Wang, T., andMelvin, W. W.,Quasi-Steady Flight to Quasi-Steady Flight Transition in a Windshear: Trajectory Optimization and Guidance, Journal of Optimization Theory and Applications, Vol. 54, No. 2, pp. 203–240, 1987.

    Article  Google Scholar 

  8. Miele, A., Wang, T., andMelvin, W. W.,Optimization and Acceleration Guidance of Flight Trajectories in a Windshear, Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, pp. 368–377, 1987.

    Google Scholar 

  9. Miele, A., Wang, T., Wang, H., andMelvin, W. W.,Optimal Penetration Landing Trajectories in the Presence of Windshear, Journal of Optimization Theory and Applications, Vol. 57, No. 1, pp. 1–40, 1988.

    Article  MathSciNet  Google Scholar 

  10. Miele, A., Wang, T., Melvin, W. W., andBowles, R. L.,Gamma Guidance Schemes for Flight in a Windshear, Journal of Guidance, Control, and Dynamics, Vol. 11, No. 4, pp. 320–327, 1988.

    Google Scholar 

  11. Miele, A., Wang, T., andMelvin, W. W.,Quasi-Steady Flight to Quasi-Steady Flight Transition for Abort Landing in a Windshear: Trajectory Optimization and Guidance, Journal of Optimization Theory and Applications, Vol. 58, No. 2, pp. 165–207, 1988.

    Article  MathSciNet  Google Scholar 

  12. Miele, A., Wang, T., Tzeng, C. Y., andMelvin, W. W.,Abort Landing guidance Trajectories in the Presence of Windshear, Journal of the Franklin Institute, Vol. 326, No. 2, pp. 185–220, 1989.

    Article  Google Scholar 

  13. Miele, A., Wang, T., andMelvin, W. W.,Penetration Landing Guidance Trajectories in the Presence of Windshear, Journal of Guidance, Control, and Dynamics, Vol. 12, No. 6, pp. 806–814, 1989.

    Google Scholar 

  14. Miele, A., Wang, T., Melvin, W. W. andBowles, R. L.,Acceleration, Gamma, and Theta Guidance for Abort Landing in a Windshear, Journal of Guidance, Control, and Dynamics, Vol. 12, No. 6, pp. 815–821, 1989.

    Google Scholar 

  15. Miele, A.,Final Report on NASA Grant No. NAG-1-156: Optimization and Guidance of Flight Trajectories in the Presence of Windshear, 1984–1989, Aero-Astronautics Report No. 244, Rice University, Houston, Texas, 1989.

    Google Scholar 

  16. Miele, A., Wang, T., Wang, H. andMelvin W. W.,Overview of Optimal Trajectories for Flight in Windshear, Control and Dynamic Systems, Edited by C. T. Leondes, Academic Press, New York, New York, Vol. 34, pp. 81–124, 1990.

    Google Scholar 

  17. Miele, A., Wang, T. andMelvin, W. W.,Wind Identification along a Flight Trajectory, Part 1: 3D-Kinematic Approach, Journal of Optimization Theory and Applications, Vol. 75, No. 1, pp. 1–31, 1992.

    Article  MathSciNet  Google Scholar 

  18. Miele, A., Wang, T. andMelvin, W. W.,Wind Identification along a Flight Trajectory, Part 2: 2D-Kinematic Approach, Journal of Optimization Theory and Applications, Vol. 76, No. 1, pp. 33–55, 1993.

    Article  MathSciNet  Google Scholar 

  19. Miele, A., Wang, T., andMelvin, W. W.,Wind Identification along a Flight Trajectory, Part 3: 2D-Dynamic Approach Journal of Optimization Theory and Applications, Vol. 77, No. 1, pp. 1–29, 1993.

    Article  MathSciNet  Google Scholar 

  20. Bryson, A. E., Jr., andZhao, Y.,Feedback Control for Penetrating a Downburst, AIAA Paper No. AIAA-87-2343, 1987.

  21. Zhao, Y., andBryson, A. E., Jr. Optimal Paths through Downbursts, Journal of Guidance, Control, and Dynamics Vol. 13, No. 5, pp. 813–818, 1990.

    Google Scholar 

  22. Zhao, Y., andBryson, A. E., Jr.,Control of an Aircraft in Downbursts, Journal of Guidance, Control, and Dynamics, Vol. 13, No. 5, pp. 819–823, 1990.

    Google Scholar 

  23. Zhao, Y., andBryson, A. E., Jr.,Aircraft Control in a Downburst on Takeoff and Landing, Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, Vol. 2, pp. 753–756, 1990.

    Google Scholar 

  24. Zhao, Y., andBryson, A. E., Jr.,Approach Guidance in a Downburst, Journal of Guidance, Control, and Dynamics, Vol. 15, No. 4, pp. 893–900, 1992.

    Google Scholar 

  25. Leitmann, G., andPandey, S.,Aircraft Control under Conditions of Windshear, Control and Dynamic Systems, Edited by C. T. Leondes, Academic Press, New York, New York, Vol. 34, pp. 1–79, 1990.

    Google Scholar 

  26. Kaitala, V., Leitmann, G., andPandey, S.,Robust Aircraft Take-Off Control: A Comparison of Aircraft Performance under Different Windshear Conditions, Differential Games—Developments in Modelling and Computation, Edited by R. P. Hämäläinen and H. K. Ehtamo, Springer, Berlin, Germany, pp. 235–244, 1991.

    Google Scholar 

  27. Leitmann, G., andPandey, S.,Aircraft Control for Flight in an Uncertain Environment: Takeoff in Windshear, Journal of Optimization Theory and Applications, Vol. 70, No. 1, pp. 25–55, 1991.

    Article  MathSciNet  Google Scholar 

  28. Botkin, N. D., Klein, V. M., Patsko, V. S., andTurova, V. L.,Aircraft Landing Control in the Presence of Windshear, Problems of Control and Information Theory, Vol. 18, No. 4, pp. 223–235, 1989.

    MathSciNet  Google Scholar 

  29. Botkin, N. D., Zarkh, M. A., andPatsko, V. S.,Numerical Solution of a Linear Differential Game, Differential Games—Developments in Modelling and Computation, Edited by R. P. Hämäläinen and H. K. Ehtamo, Springer, Berlin, Germany, pp. 226–234, 1991.

    Google Scholar 

  30. Bulirsch, R., Montrone, F., andPesch, H. J.,Abort Landing in the Presence of a Windshear as a Minimax Optimal Control Problem, Part 1: Necessary Conditions, Journal of Optimization Theory and Applications, Vol. 70, No. 1, pp. 1–23, 1991.

    Article  Google Scholar 

  31. Bulirsch, R., Montrone, F., andPesch, H. J.,Abort Landing in the Presence of a Windshear as a Minimax Optimal Control Problem, Part 2: Multiple Shooting and Homotopy, Journal of Optimization Theory and Applications, Vol. 70, No. 2, pp. 223–254, 1991.

    Article  Google Scholar 

  32. Visser, H. G.,Optimal Lateral Escape Maneuvers for Microburst Encounters during Final Approach, Report LR-691, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands, 1992.

    Google Scholar 

  33. Bulirsch, R.,Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung, Report of the Carl-Cranz Gesellschaft, DLR, Oberpfaffenhofen, Germany, 1971.

    Google Scholar 

  34. Stoer, J., andBulirsch, R.,Introduction to Numerical Analysis, Springer, New York, New York, 1993.

    Google Scholar 

  35. Deuflhard, P.,A Modified Newton Method for the Solution of Ill-Conditioned Systems of Nonlinear Equations with Application to Multiple Shooting, Numerische Mathematik, Vol. 22, pp. 289–315, 1974.

    Article  Google Scholar 

  36. Deuflhard, P.,A Relaxation Strategy for the Modified Newton Method, Optimization and Optimal Control, Edited by R. Bulirschet al., Springer, Berlin, Germany, pp. 59–73, 1975.

    Google Scholar 

  37. Oberle, H. J.,Numerische Berechnung optimaler Steuerungen von Heizung und Kühlung für ein realistisches Sonnenhausmodell, Habilitationsschrift, Munich University of Technology, Munich, Germany, 1982.

    Google Scholar 

  38. Maurer, H.,Optimale Steuerprozesse mit Zustandsbeschränkungen, Habilitationsschrift, University of Würzburg, Würzburg, Germany, 1976.

    Google Scholar 

  39. Bowles, R. L.,Windshear Detection and Avoidance: Airborne Systems Survey, Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, Vol. 2, pp. 708–736, 1990.

    Google Scholar 

  40. Bryson, A. E., Jr., andHo, Y. C.,Applied Optimal Control, Ginn and Company, Waltham, Massachusetts, 1969.

    Google Scholar 

  41. Pesch, H. J.,Offline and Online Computation of Optimal Trajectories in the Aerospace Field, Applied Mathematics in Aerospace Science and Engineering, Edited by A. Miele and A. Salvetti, Plenum Publishing Corporation, New York, New York, pp. 165–219, 1994.

    Google Scholar 

  42. McDanell, J. P. andPowers, W. F.,Necessary Conditions for Joining Optimal Singular and Nonsingular Subarcs, SIAM Journal on Control, Vol. 9, pp. 161–173, 1971.

    Article  Google Scholar 

  43. Kelley, H. J., Kopp, R. E., andMoyer, H. G.,Singular Extremals, Topics in Optimization, Edited by G. Leitmann, Academic Press, New York, New York, pp. 63–101, 1967.

    Google Scholar 

  44. Oberle, H. J., andGrimm, W.,BNDSCO—A Program for the Numerical Solution of Optimal Control Problems, Internal Report No. 515-89/22, Institute for Flight Systems Dynamics, DLR, Oberpfaffenhofen, Germany, 1989.

    Google Scholar 

  45. Hartl, R. F., Sethi, S. P., andVickson, R. G.,A Survey of the Maximum Principles for Optimal Control Problems with State Constraints, Research Report No 153, Institute for Econometrics, Operations Research, and System Theory, Vienna University of Technology, Vienna, Austria, 1992.

    Google Scholar 

  46. Wolfson, M.,et al.,Characteristics of Thunderstorm-Generated Low Altitude Wind Shear: A Survey Based on Nationwide Terminal Doppler Weather Radar Testbed Measurements, Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, Hawaii, Vol. 2, pp. 682–688, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Miele

This paper is dedicated to Professor George Leitmann on the occasion of his seventieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkmann, P., Pesch, H.J. Abort landing in windshear: Optimal control problem with third-order state constraint and varied switching structure. J Optim Theory Appl 85, 21–57 (1995). https://doi.org/10.1007/BF02192298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02192298

Keywords

Navigation