Skip to main content
Log in

Signal transduction by cGMP in heart

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Early studies in whole heart indicated that cGMP antagonized the positive inotropic effects of catecholamines and cAMP. However, the regulation of cGMP levels by a variety of agents was not always consistent with their effects on contractility. It is now clear that at least two major cell types in whole heart, cardiac myocytes and vascular smooth muscle cells, differ markedly in their mechanisms of cGMP regulation and response to cGMP. Furthermore, experiments on isolated cardiac myocytes indicate that the mechanism of cGMP action even in this single cell type can be multifaceted. Cyclic GMP inhibits the L-type calcium channel current (ICa), which is the major source of Ca++ entry into heart cells, and which plays a predominant role in the initiation and regulation of cardiac electrical and contractile activities. Patch-clamp measurements of ICa indicate that in isolated frog myocytes cGMP inhibits ICa by stimulation of cAMP phosphodiesterase (cGS-PDE), whereas in purified rat ventricular myocytes, cGMP predominantly inhibits ICa via a mechanism involving cGMP-dependent protein kinase (cGMP-PK). Under certain conditions, cGMP can also inhibit a cGMP-inhibited cAMP phosphodiesterase (cGI-PDE) and thereby produce a stimulatory effect on ICa. Biochemical characterization of the endogenous PDEs and cGMP-PK in purified cardiac myocytes provided further evidence in support of these mechanisms of cGMP action on ICa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anand-Srivastava MB, Cantin M (1986) Atrial natriuretic factor receptors are negatively coupled to adenylate cyclase in cultured atrial and ventricular cardiocytes. Biochem Biophys Res Commun 138:427–436

    PubMed  Google Scholar 

  2. Beavo JA, Hardmann JG, Sutherland JEW (1971) Stimulation of adenosine-3′,5′-monophosphate hydrolysis by guanosine-3′,5′-monophosphate. J Biol Chem 246:3841–3846

    PubMed  Google Scholar 

  3. Beavo JA, Reifsnyder DH (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. TIPS 11:150–155

    PubMed  Google Scholar 

  4. Bkaily G, Sperelakis N (1985) Injection of guanosine-3′,5′-cyclic monophosphate into heart cells blocks calcium slow channels. Am J Physiol 248:H745-H749

    PubMed  Google Scholar 

  5. Blumenthal DK, Stull JT, Gill GN (1978) Phosphorylation of cardiac troponin by guanosine-3′,5′-monophosphate-dependent protein kinase. J Biol Chem 253:334–336

    Google Scholar 

  6. Bode DC, Kanter JR, Brunton LL (1991) Cellular distribution of phosphodiesterase isoforms in rat cardiac tissue. Circ Res 68:1070–1079

    PubMed  Google Scholar 

  7. Breitweiser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540

    PubMed  Google Scholar 

  8. Büchler W, Meinecke M, Chakraborty T, Jahnsen T, Walter U, Lohmann SM (1990) Regulation of gene expression by transfected subunits of cAMP-dependent protein kinase. Eur J Biochem 188:253–259

    PubMed  Google Scholar 

  9. Cramb G, Banks R, Rugg EL, Aiton JF (1987) Actions of atrial natriuretic peptide (ANP) on cyclic nucleotide concentrations and phosphatidylinositol turnover in ventricular myocytes. Biochem Biophys Res Commun 148:962–970

    PubMed  Google Scholar 

  10. Cuppoletti J, Thakkar J, Sperelakis N, Wahler G (1989) Cardiac sarcolemmal substrate of the cGMP-dependent protein kinase. Membrane Biochemistry 7:135–142

    Google Scholar 

  11. Diamond J, Ten Eick RE, Trapani AJ (1977) Are increases in cyclic GMP levels responsible for the negative inotropic effects of acetylcholine in heart? Biochem Biophys Res Comm 79:912–917

    PubMed  Google Scholar 

  12. DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cAMP. Nature 351:145–147

    PubMed  Google Scholar 

  13. DiFrancesco D, Tromba C (1988) Inhibition of the hyperpolarization-activated current (if) induced by acetylcholine in rabbit sino-atrial node myocytes. J Physiol 405:477–491

    PubMed  Google Scholar 

  14. DiFrancesco D, Tromba C (1988) Muscarinic control of the hyperpolarization-activated current (if) in rabbit sino-atrial node myocytes. J Physiol 405:493–510

    PubMed  Google Scholar 

  15. Eigenthaler M, Friedrich C, Schanzenbächer P, Walter U (1990) Concentration and regulation of cyclic nucleotides, vasodilator-regulated protein kinases and one of their substrates in human platelets. Eur J Clin Invest 20 (2):A16

    Google Scholar 

  16. Endoh M (1979) Correlation of cyclic AMP and cyclic GMP levels with changes in contractile force of dog ventricular myocardium during cholinergic antagonism of positive inotropic actions of histamine, glucagon, theophylline and papaverine. Jap J Pharmacol 29:855–864

    PubMed  Google Scholar 

  17. Endoh M, Yamashita S (1981) Differential responses to carbachol, sodium nitroprusside, and 8-bromo-guanosine-3′,5′-monophosphate of canine atrial and ventricular muscle. Brit J Pharmacol 73:393–399

    Google Scholar 

  18. Felbel J, Trockur B, Ecker T, Landgraf W, Hofmann F (1988) Regulation of cytosolic calcium by cAMP and cGMP in freshly isolated smooth muscle cells from bovine trachea. J Biol Chem 263:16764–16771

    PubMed  Google Scholar 

  19. Fischmeister R, Hartzell HC (1986) Mechanism of action of acetylcholine on calcium current in single cells from frog ventricle. J Physiol (London) 376:183–202

    Google Scholar 

  20. Fischmeister R, Hartzell HC (1987) Cyclic guanosine-3′,5′-monophosphate regulates the calcium current in single cells from frog ventricle. J Physiol 387:453–472

    PubMed  Google Scholar 

  21. Fischmeister R, Hartzell HC (1990) Regulation of calcium current by low-Km cyclic AMP phosphodiesterases in cardiac cells. Mol Pharmacol 38:426–433

    PubMed  Google Scholar 

  22. Fischmeister R, Hartzell HC (1991) Cyclic AMP phosphodiesterases and Ca2+ current regulation in cardiac cells. Life Sci 48:2365–2376

    PubMed  Google Scholar 

  23. Fleming BP, Giles W, Lederer J (1981) Are acetylcholine-induced increases in42K efflux mediated by intracellular cyclic GMP in turtle cardiac pacemaker tissue? J Physiol 314:47–64

    PubMed  Google Scholar 

  24. Flitney FW, Singh J (1981) Evidence that cyclic GMP may regulate cyclic AMP metabolism in isolated frog ventricle. J Mol Cell Cardiol 13:963–979

    PubMed  Google Scholar 

  25. Flockerzi V, Oeken H-J, Hofmann F, Pelzer D, Cavalie A, Trautwein W (1986) Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 323:66–68

    PubMed  Google Scholar 

  26. Flockhart DA, Corbin JD (1982) Regulatory mechanisms in the control of protein kinases. CRC Crit Rev Biochem 12:133–186

    PubMed  Google Scholar 

  27. Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2018

    PubMed  Google Scholar 

  28. George WJ, Polson JB, O'Toole AG, Goldberg N (1970) Elevation of 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci USA 66:398–403

    PubMed  Google Scholar 

  29. Gisbert MP, Fischmeister R (1988) Atrial natriuretic factor regulates the calcium current in frog isolated cardiac cells. Circ Res 62:660–667

    PubMed  Google Scholar 

  30. Goy MF (1991) cGMP: the wayward child of the cyclic nucleotide family. TINS 14:293–299

    PubMed  Google Scholar 

  31. Hartzell HC (1988) Regulation of cardiac ion channels by catecholamines, acetylcholine and 2nd messenger systems. Prog Biophys Mol Biol 52:165–247

    PubMed  Google Scholar 

  32. Hartzell HC, Fischmeister R (1986) Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323:273–275

    PubMed  Google Scholar 

  33. Hartzell HC, Fischmeister R (1987) Effect of forskolin and acetylcholine on calcium current in single isolated cardiac myocytes. Mol Pharmacol 32:639–645

    PubMed  Google Scholar 

  34. Hartzell HC, Méry P-F, Fischmeister R, Szabo G (1991) Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature 351:573–576

    PubMed  Google Scholar 

  35. Hathaway DR, March KL (1989) Molecular cardiology: new avenues for the diagnosis and treatment of cardiovascular disease. J Amer Coll Cardiol 13:265–282

    Google Scholar 

  36. Heil WG, Landgraf W, Hofmann F (1987) A catalytically active fragment of cGMP-dependent protein kinase. Eur J Biochem 168:117–121

    PubMed  Google Scholar 

  37. Hescheler J, Kameyama M, Trautwein W (1986) On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflugers Arch 407:182–189

    PubMed  Google Scholar 

  38. Hescheler J, Tang M, Jastorff B, Trautwein W (1987) On the mechanism of histamine induced enhancement of the cardiac Ca2+ current. Pflügers Arch 410:23–29

    Google Scholar 

  39. Hofmann F, Nastainczyk W, Röhrkasten A, Schneider T, Sieber M (1987) Regulation of the L-type calcium channel. Trends Pharmacol Sci 8:393–398

    Google Scholar 

  40. Huggins JP, Cook EA, Piggott JR, Mattinsley TJ, England PJ (1989) Phospholamban is a good substrate for cyclic GMP-dependent protein kinase in vitro but not in intact cardiac or smooth muscle. Biochem J 260:829–835

    PubMed  Google Scholar 

  41. Isenberg G, Cerbai E, Klöckner UH (1987) Ionic channels and adenosine in isolated heart cells. In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer, Berlin Heidelberg, pp 323–335

    Google Scholar 

  42. Jahn H, Nastainczyk W, Röhrkasten A, Schneider T, Hofmann F (1988) Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. Eur J Biochem 178:535–542

    PubMed  Google Scholar 

  43. Kameyama M, Hescheler J, Hofmann F, Trautwein W (1986) Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407:123–128

    Google Scholar 

  44. Kameyama M, Hofmann F, Trautwein W (1985) On the mechanism of β-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch 405:285–293

    Google Scholar 

  45. Katsuki S, Arnold WP, Murad F (1977) Effects of sodium nitroprusside, nitroglycerin and sodium azide on levels of cyclic nucleotides and mechanical activity in various tissues. J Cyclic Nucleot Res 3:239–247

    Google Scholar 

  46. Kaupp UB (1991) The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. TINS 14:150–157

    PubMed  Google Scholar 

  47. Kaupp UB, Niidome T, Tanabe T, Terade S, Bönigk W, Stühmer W, Cook NJ, Kangawa K, Matsuo H, Hirose T, Miyata T, Numa S (1989) Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342:762–766

    PubMed  Google Scholar 

  48. Kohlhardt M, Haap K (1978) 8-Bromo-guanosine-3′,5′-monophosphate mimics the effect of acetylcholine on slow response action potential and contractile force in mammalian atrial myocardium. J Mol Cell Cardiol 10:573–586

    PubMed  Google Scholar 

  49. Lee MA, West RE jr, Moss J (1988) Atrial natriuretic factor reduces cyclic adenosine monophosphate content of human fibroblasts by enhancing phosphodiesterase activity. J Clin Invest 82:388–393

    PubMed  Google Scholar 

  50. Levi RC, Alloatti G (1988) Histamine modulates calcium current in guinea-pig ventricular myocytes. J Pharmacol Exp Therap 246:377–383

    Google Scholar 

  51. Levi RC, Alloatti G, Fischmeister R (1989) Cyclic GMP regulates the Ca-channel current in guinea pig ventricular myocytes. Pflügers Arch 413:685–687

    Google Scholar 

  52. Li T, Volpp K, Applebury BL (1990) Bovine cone photoreceptor cGMP phosphodiesterase structure deduced from a cDNA clone. Proc Natl Acad Sci USA 87:293–297

    PubMed  Google Scholar 

  53. Light DB, Corbin JD, Stanton BA (1990) Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344:336–339

    PubMed  Google Scholar 

  54. Lincoln TM, Corbin JD (1978) Purified cyclic GMP-dependent protein kinase catalyzes the phosphorylation of cardiac troponin inhibitory subunit (TN-I). J Biol Chem 253:337–339

    PubMed  Google Scholar 

  55. Lincoln TM, Keely SL (1981) Regulation of cardiac cyclic GMP-dependent protein kinase. Biochim Biophys Acta 676:230–244

    PubMed  Google Scholar 

  56. Lohmann SM, Walter U, Miller PE, Greengard P, DeCamilli P (1981) Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proc Natl Acad Sci USA 78:653–657

    PubMed  Google Scholar 

  57. MacFarland RT, Zelus BD, Beavo JA (1991) High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem 266:136–142

    PubMed  Google Scholar 

  58. Martins TJ, Mumby MC, Beavo JA (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 257:1973–1979

    PubMed  Google Scholar 

  59. McCall D, Fried TA (1990) Effect of atriopeptin II on Ca influx, contractile behavior and cyclic nucleotide content of cultured neonatal rat myocardial cells. J Mol Cell Cardiol 22:201–212

    PubMed  Google Scholar 

  60. Mehegan JP, Muir WW, Unverferth DV, Ferrel RH, McGuirk SM (1985) Electrophysiological effects of cyclic GMP on canine cardiac Purkinje fibers. J Cardiovasc Pharmacol 7:30–35

    PubMed  Google Scholar 

  61. Méry P-F, Brechler V, Pavoine C, Pecker F, Fischmeister R (1990) Glucagon stimulates the cardiac Ca2+ current by activation of adenyl cyclase and inhibition of phosphodiesterase. Nature 345:158–161

    PubMed  Google Scholar 

  62. Méry P-F, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 88:1197–1201

    PubMed  Google Scholar 

  63. Meulemans AL, Sipido KR, Sys SU, Brutsaert DL (1988) Atriopeptin III induces early relaxation of isolated mammalian papillary muscle. Circ Res 62:1171–1174

    PubMed  Google Scholar 

  64. Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233

    PubMed  Google Scholar 

  65. Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444

    PubMed  Google Scholar 

  66. Nargeot J, Nerbonne JM, Engels L, Lester HA (1983) Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proc Natl Acad Sci USA 80:2395–2399

    PubMed  Google Scholar 

  67. Nawrath H (1977) Does cyclic GMP mediate the negative inotropic effect of acetylcholine in the heart? Nature 267:72–74

    Google Scholar 

  68. Neyses L, Vetter H (1989) Action of atrial natriuretic peptide and angiotensin II on the myocardium: studies in isolated rat ventricular cardiomyocytes. Biochim Biophys Res Commun 163:1435–1443

    Google Scholar 

  69. Nicholson CD, Challis RAJ, Shahid M (1991) Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. TIPS 12:19–27

    PubMed  Google Scholar 

  70. Ono K, Trautwein W (1991) Potentiation by cyclic GMP of β-adrenergic effect on calcium current in guinea-pig ventricular cells. J Physiol (London) 443:387–404

    Google Scholar 

  71. Paupardin-Tritsch D, Hammond C, Gerschenfeld HM, Nairn AC, Greengard P (1986) cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones. Nature 323:812–814

    PubMed  Google Scholar 

  72. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538

    PubMed  Google Scholar 

  73. Pfitzer G, Rüegg JC, Flockerzi V, Hofmann F (1982) cGMP-dependent protein kinase decreases calcium sensitivity of skinned cardiac fibers. FEBS Lett 149:171–175

    PubMed  Google Scholar 

  74. Racymaekers L, Hofmann F, Casteels R (1988) Cyclic GMP-dependent protein kinase phosphorylates phospholamban in isolated sarcoplasmic reticulum from cardiac and smooth muscle. Biochem J 252:269–273

    PubMed  Google Scholar 

  75. Reeves ML, Leigh BK, England PJ (1987) The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J 241:535–541

    PubMed  Google Scholar 

  76. Richard S, Nerbonne JM, Nargeot J, Lester HA (1985) Photochemically produced intracellular concentration jumps of CAMP mimic the effects of catecholamines on excitation-contraction coupling in frog atrial fibers. Pflügers Arch 403:312–317

    Google Scholar 

  77. Rossie S, Catterall WA (1987) Regulation of ionic channels. In: Boyer PD, Krebs EG (eds) The enzymes. Academic Press, New York, vol 58, pp 335–358

    Google Scholar 

  78. Rugg EL, Aiton JF, Cramb G (1989) Atrial natriuretic peptide receptors and activation of guanylate cyclase in rat cardiac sarcolemma. Biochem Biophys Res Commun 162:1339–1345

    PubMed  Google Scholar 

  79. Sandberg M, Butt E, Nolte C, Fischer L, Halbrügge M, Beltman J, Jahnsen T, Genieser H-G, Jastorff B, Walter U (1991) Characterization of Sp-5,6-dichloro-1-β-D-ribofuranosylben-zimidazole-3′,5′-monophosphoro-thioate (Sp-5,6-DCl-cBIMPS) as a potent and specific activator of cAMP-dependent protein kinase in cell extracts and intact cells. Biochem J 279:521–527

    PubMed  Google Scholar 

  80. Sandberg M, Natarajan V, Ronander I, Kalderon D, Walter U, Lohmann SM, Jahnsen T (1989) Molecular cloning and predicted full-length amino acid sequence of the type Iβ isozyme of cGMP-dependent protein kinase from human placenta. FEBS Lett 255:321–329

    PubMed  Google Scholar 

  81. Schmidt K, Mayer B, Kukovetz WR (1989) Effect of calcium on endothelium-derived relaxing factor formation and cGMP levels in endothelial cells. Eur J Pharmacol 170:157–166

    PubMed  Google Scholar 

  82. Schulz S, Yuen PST, Garbers DL (1991) The expanding family of guanyl cyclases. TIPS 12:116–120

    PubMed  Google Scholar 

  83. Simmons MA, Hartzell HC (1988) Role of phosphodiesterase in regulation of calcium current in isolated cardiac myocytes. Mol Pharmacol 33:664–671

    PubMed  Google Scholar 

  84. Singh J, Flitney FW (1980) Adenosine depresses contractility and stimulates 3′,5′ cyclic nucleotide metabolism in the isolated frog ventricle. J Mol Cell Cardiol 12:285–297

    PubMed  Google Scholar 

  85. Singh J, Flitney FW (1981) Inotropic responses of the frog ventricle to dibutyryl cyclic AMP and 8-bromo-cyclic GMP and related changes in endogenous cyclic nucleotide levels. Biochem Pharmacol 30:1475–1481

    PubMed  Google Scholar 

  86. Szabo G, Otero AS (1990) G-Protein mediated regulation of K+ channels in heart. Ann Rev Physiol 52:293–305

    Google Scholar 

  87. Takasago T, Imagawa T, Furukawa K, Ogurusu T, Shigekawa M (1991) Regulation of the cardiac ryanodine receptor by protein kinase dependent phosphorylation. J Biochem 109:163–170

    PubMed  Google Scholar 

  88. Tanabe T, Mikami A, Numa S, Beam KG (1990) Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Nature 344:451–453

    PubMed  Google Scholar 

  89. Tei M, Horie M, Makita S, Suzuki H, Hazama A, Okada Y, Kawai C (1990) Atrial natriuretic peptide reduces the basal level of cytosolic free Ca2+ in guinea pig cardiac myocytes. Biochem Biophys Res Comm 167:413–418

    PubMed  Google Scholar 

  90. Thakkar J, Tang S-B, Sperelakis N, Wahler GM (1988) Inhibition of cardiac slow action potentials by 8-bromo-cyclic GMP occurs independent of changes in cyclic AMP levels. Can J Physiol Pharmacol 66:1092–1095

    PubMed  Google Scholar 

  91. Trautwein W, Taniguchi J, Noma A (1982) The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflügers Arch 392:307–314

    Google Scholar 

  92. Trautwein W, Trube G (1976) Negative isotropic effect of cyclic GMP in cardiac fiber fragments. Pflügers Arch 366:293–295

    Google Scholar 

  93. Tsien RW, Bean BP, Hess P, Lansman JB, Bilius B, Nowycky M (1986) Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol 18:691–710

    PubMed  Google Scholar 

  94. Tuganowski W, Kopee P (1978) The effect of cGMP in rabbit auricle as studied by a cut-end method. Naunyn-Schmied Arch Pharmacol 304:211–213

    Google Scholar 

  95. Volpe M, Sosa RE, Müller FB, Camargo MJF, Glorioso N, Laragh JH, Maack T, Atlas SA (1986) Differing hemodynamic responses to atrial natriuretic factor in two models of hypertension. Am J Physiol 250:H871-H878

    PubMed  Google Scholar 

  96. Wahler GM, Rusch NJ, Sperelakis N (1990) 8-Bromo-cyclic GMP inhibits the calcium channel current in embryonic chick ventricular myocytes. Can J Physiol 68:531–534

    Google Scholar 

  97. Wahler GM, Sperelakis N (1985) Intracellular injection of cyclic GMP depresses cardiac slow action potentials. J Cyclic Nucleot Prot Phosphoryl Res 10:83–95

    Google Scholar 

  98. Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39:163–196

    PubMed  Google Scholar 

  99. Waldmann R, Walter U (1989) Cyclic nucleotide elevating vasodilators inhibit platelet aggregation at an early step of the activation cascade. Eur J Pharmacol 159:317–320

    PubMed  Google Scholar 

  100. Walter U (1984) Cyclic GMP-regulated enzymes and their possible physiological functions. Adv Cycl Nucl Prot Phosph Res 17:249–258

    Google Scholar 

  101. Walter U (1989) Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 113:42–88

    Google Scholar 

  102. Walter U, Nolte C, Geiger J, Schanzenbächer P, Kochsiek K (1991) Inhibition of platelet function by cyclic nucleotides and cyclic nucleotide-dependent protein kinases. In: Herman AG (ed) Antithrombotics: pathophysiological rationale for pharmacological interventions. Kluwer Academic Publishers, Netherlands, pp 121–138

    Google Scholar 

  103. Weishaar RE, Kobylarz-Singer DC, Steffen RP, Kaplan HR (1987) Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res 61:539–547

    PubMed  Google Scholar 

  104. Wernet W, Flockerzi V, Hofmann F (1989) The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett 251:191–196

    PubMed  Google Scholar 

  105. Whalin ME, Scammel JG, Strada SJ, Thompson WJ (1991) Phosphodiesterase II, the cGMP-activable cyclic nucleotide phosphodiesterase, regulates cyclic AMP metabolism in PC12 cells. Mol Pharmacol 39:711–717

    PubMed  Google Scholar 

  106. Wilkerson RD, Paddock RJ, George WJ (1976) Effects of derivatives of cyclic AMP and cyclic GMP on contraction force of cat papillary muscles. Eur J Pharmacol 36:247–251

    PubMed  Google Scholar 

  107. Wrenn RW, Kuo JF (1981) Cyclic GMP-dependent phosphorylation of an endogenous protein from rat heart. Biochem Biophys Res Commun 101:1274–1280

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, S.M., Fischmeister, R. & Walter, U. Signal transduction by cGMP in heart. Basic Res Cardiol 86, 503–514 (1991). https://doi.org/10.1007/BF02190700

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02190700

Key words

Navigation