Skip to main content
Log in

Glutamate in the mammalian CNS

  • Original Articles
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Summary

The excitatory amino acid glutamate plays an important role in the mammalian CNS. Studies conducted from 1940 to 1950 suggested that oral administration of glutamate could have a beneficial effect on normal and retardate intelligence. The neurotoxic nature of glutamate resulting in excitotoxic lesions (neuronal death) is thought possibly to underlie several neurological diseases including Huntington's disease, status epilepticus, Alzheimer's dementia and olivopontocerebellar atrophy. This neurodegenerative effect of glutamate also appears to regulate the formation, modulation and degeneration of brain cytoarchitecture during normal development and adult plasticity, by altering neuronal outgrowth and synaptogenesis. In addition to its function as a neurotransmitter in several regions of the CNS, glutamate seems to be specifically implicated in the memory process. Long-term potentiation (LTP) and long-term depression (LTD), two forms of synaptic plasticity associated with learning and memory, both involve glutamate receptors. Studies with antagonists of glutamate receptors reveal a highly selective dependence of LTP and LTD on theN-methyl-d-aspartate and quisqualate receptors respectively. The therapeutic value of glutamate receptor antagonists is being actively investigated. The most promising results have been obtained in epilepsy and to some extent in ischaemia and stroke. The major drawback remains the inability of antagonists to permeate the blood-brain barrier when administered systemically. Efforts should be directed towards finding antagonists that are lipid soluble and able to cross the blood-brain barrier and to find precursors that would yield the antagonist intracerebrally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul-Ghani AS, Bruce D, Bradford HF (1982) Effect of glutamate dimethyl ester and glutamic diethyl ester in delaying the onset of convulsions induced by penthylenetetrazol and strychnine. Biochem Pharmacol 31:3144–3146

    Google Scholar 

  • Albert K, Hoch P, Waelsch H (1946) Preliminary report on the effect of glutamic acid administration in mentally retarded subjects. J Nerv Ment Dis 104:263–274

    Google Scholar 

  • Albert K, Hoch P, Waelsch H (1951) Glutamic acid and mental deficiency. J Nerv Ment Dis 114:471–491

    Google Scholar 

  • Astin AW, Ross S (1960) Glutamic acid and human intelligence. Psychol Bull 57:429–434

    Google Scholar 

  • Avoli M, Olivier A (1987) Bursting in human epileptogenic neocortex is depressed by an N-methly-D-aspartate antagonist. Neurosci Lett 76:249–254

    Google Scholar 

  • Bakke JL, Lawrence N, Bennett J, Robinson S, Bowers CY (1978) Late effects of administering monosodium glutamate to neonatal rats. Neuroendocrinology 26:220–228

    Google Scholar 

  • Bandler R (1982) Induction of ‘rage’ following microinjections of glutamate into midbrain but not hypothalamus of cats. Neurosci Lett 30:183–188

    Google Scholar 

  • Barnes CA (1988) Spatial learning and memory processes: the search for their neurobiological mechanisms in the rat. Trends Neurosci 11:163–169

    Google Scholar 

  • Baudry M, Oliver M, Creager R, Wieraszko A, Lynch G (1980) Increase in glutamate receptors following repetitive electrical stimulation in hippocampal slices. Life Sci 27:325–330

    Google Scholar 

  • Beas-Záraté C, Araus-Contreras J, Velazquez A, Feria-Velasco A (1985) Monosodium L-glutamate induced convulsions. II. Changes in catecholamine concentrations in various brain areas of adult rats. Gen Pharmacol 16:489–493

    Google Scholar 

  • Berdichevsky E, Riveros N, Sanchez-Armass S, Orrego F (1983) Kainate, N-methylaspartate and other excitatory amino acids increase calcium influx into rat brain cortex cells in vitro. Neurosci Lett 36:75–80

    Google Scholar 

  • Berger TW (1984) Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning. Science 224:627–629

    Google Scholar 

  • Bernardi N (1982) Possible involvement of glutamate in electrocortical activity. Neuropharmacology 21:937–939

    Google Scholar 

  • Beull SJ, Coleman PD (1979) Dendritic growth in the aged human brain and failure of growth in senile dementia. Science 206: 854–856

    Google Scholar 

  • Bhagavan HN, Coursin DB, Stewart CN (1971) Monosodium glutamate induced convulsive disorders in rats. Nature 232:275

    Google Scholar 

  • Biziere K, Coyle JT (1978) Effects of kainic acid on ion distribution and ATP levels of striatal slices incubated in vitro. J Neurochem 31:513–520

    Google Scholar 

  • Bliss TVP, Gardner-Medwin A (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following simulation of the perforant path. J Physiol (Lond) 232:357–374

    Google Scholar 

  • Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232: 331–356

    Google Scholar 

  • Bonta JL, DeVos CJ, Hillen FC (1969) 1-hydroxy-3 amino pyrrolidone-2 (HA-966). 1. Behaviour and motor effects. Arch Int Pharmacodyn Ther 182:391–393

    Google Scholar 

  • Brown RR, Price JM (1956) Quantitative studies on metabolites of tryptophan in the urine of the dog, cat, rat and man. J Biol Chem 219:985–997

    Google Scholar 

  • Burdette LJ, Dyer RS (1987) Differential effects of caffeine, picrotoxin and pentylenetetrazol on hippocampal after discharge activity and wet dog shakes. Exp Neurol 96:381–392

    Google Scholar 

  • Bushnell PJ, Bowman RE (1979) Reversal learning deficits in young monkeys exposed to lead. Pharmacol Biochem Behav 10:733–742

    Google Scholar 

  • Chang FL, Greenough WT (1984) Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice. Brain Res 309:35–46

    Google Scholar 

  • Chapman AG, Collins JF, Meldrum BS, Westerberg E (1983) Uptake of a novel anticonvulsant compound 2 amino 7 phosphono-(4,53H) hepatanoic acid, into mouse brain. Neurosci Lett 37: 75–80

    Google Scholar 

  • Chapman AG, Croucher MJ, Meldrum BS (1984a) Evaluation of anticonvulsant drugs in DBA/2 mice with sound induced seizures. Arzneimittelforschung 34:1261–1264

    Google Scholar 

  • Chapman AG, Westerberg E, Premachandra M, Meldrum BS (1984b) Changes in regional neurotransmitter amino acid levels in rat brain during seizures induced by L-allylglycine, bicuculline and kainic acid. J Neurochem 43:62–70

    Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    Google Scholar 

  • Clapp RW (1949) Glutamic acid in the treatment of mentally handicapped children. Review of the background. J Missouri State Med Assoc 46:181–182

    Google Scholar 

  • Coan EJ, Saywood W, Collingridge GL (1987) MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci Lett 80:111–114

    Google Scholar 

  • Collingridge GL, Bliss TVP (1987) NMDA receptors—their role in long term potentiation. Trends Neurosci 10:228–293

    Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983) The antagonism of amino acid induced excitation of rat hippocampal CA 1 neurones in vitro. J Physiol (Lond) 334:19–31

    Google Scholar 

  • Contini-Poli O (1950) Risultati sul trattamento con acido glutammico su bambini tardivi. Minerva Pediatr 2:483–497

    Google Scholar 

  • Cotman CW, Hamberger A (1978) Glutamate as a CNS neurotransmitter: properties of release, inactivation and biosynthesis. In: Fonnum F (ed) Amino acids as chemical transmitters. Plenum Press, New York, pp 379–412

    Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 7:263–265

    Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organisation of excitatory amino acid receptors and their pathways. Trends Neurosci 7:273–280

    Google Scholar 

  • Coyle JT, Bird SJ, Evans RH, Gulley RL, Nadler JV, Nicklas WJ, Olney JW (1981) Excitatory amino acid neurotoxins: selectivity, specificity and mechanism of action. Neurosci Res Progr Bull 19:4

    Google Scholar 

  • Croucher MJ, Collins JF, Meldrum BS (1982) Anticonvulsant action of excitatory amino acid antagonists. Science 216:899–901

    Google Scholar 

  • Croucher MJ, Meldrum B, Jones AW, Watkins IC (1984) γ-D-glutamyl-aminomethylsulphonic acid (GAMS), a kainate and quisqualate antagonist, prevents sound induced seizures in DBA/2 mice. Brain Res 322:111–114

    Google Scholar 

  • Crunelli V, Forda S, Collingridge GL, Kelly JS (1982) Intracellular recorded synaptic antagonism in the rat dentate gyrus. Nature 300:450–452

    Google Scholar 

  • Curtis DR, Koizumi K (1961) Chemical transmitter substances in brain stem of cat. J Neurophysiol 24:80–90

    Google Scholar 

  • Czyuczwar SJ, Meldrum B (1982) Protection against chemically induced seizures by 2-amino-7-phosphonoheptanoic acid. Eur J Pharmacol 83:335–338

    Google Scholar 

  • Dada MO, Blake CA (1985) Monosodium L-glutamate administration: effects on gonadotrophin secretion, gonadotrophs and mammotrophs in prepubertal female rats. J Endocrinol 104: 185–192

    Google Scholar 

  • Davies J, Evans RH, Jones AW, Smith DAS, Watkins JC (1982) Differential activation and blockade of excitatory amino acid receptors in the mamalian and amphibian central nervous system. Comp Biochem Physiol 72:211–224

    Google Scholar 

  • DeMontigny C, Lund JP (1980) A microiontophoretic study of the action of kainic acid and putative neurotransmitters in the rat mesencephalic trigeminal nucleus. Neuroscience 5:1621–1628

    Google Scholar 

  • DiChiara G, Gessa GL (1981) Glutamate as a neurotransmitter. Raven Press, New York

    Google Scholar 

  • Dragunow M (1986) Adenosine: the brain's natural anticonvulsant? Trends Pharmacol Sci 7:128–130

    Google Scholar 

  • Dragunow M, Faull RLM (1988) Neuroprotective effects of adenosine. Trends Pharmacol Sci 9:193–194

    Google Scholar 

  • Dragunow M, Robertson HA (1987) 8-cyclopentyl 1,3 dimethylxanthine prolongs epileptic seizures in rats. Brain Res 417: 377–379

    Google Scholar 

  • Duce IR, Donaldson PL, Usherwood PNR (1983) Investigations into the mechanism of excitatant amino acid cytotoxicity using a well-characterized glutamatergic system. Brain Res 263:77–87

    Google Scholar 

  • Dunwidie T, Madison D, Lynch G (1978) Synaptic transmission is required for long-term potentiation. Brain Res 150:413–417

    Google Scholar 

  • Dusticier N, Kerkerian L, Errami M, Nieoullon A (1985) Effects of pyroglutamic acid on corticostriatal glutamatergic transmission. Neuropharmacology 24:903–908

    Google Scholar 

  • Ekerot CF, Kano M (1985) Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res 342:357–360

    Google Scholar 

  • Engberg I, Flatman JA, Lambert JDC (1979) The actions of excitatory amino acids on motoneurones in the feline spinal cord. J Physiol (Lond) 288:227–261

    Google Scholar 

  • Engelsen B (1986) Neurotransmitter glutamate: its clinical importance. Acta Neurol Scand 74:337–355

    Google Scholar 

  • Eskay RL, Brownstein MJ, Long RT (1979) α-melanocyte stimulating hormone: reduction in adult rat brain after monosodium glutamate treatment of neonates. Science 205:827–829

    Google Scholar 

  • Fagg GE, Foster AC, Ganong AH (1986) Excitatory amino acid synaptic mechanisms and neurological function. Trends Pharmacol Sci 7:357–363

    Google Scholar 

  • Farber L (1981) The role of calcium in cell death. Life Sci 29: 1289–1295

    Google Scholar 

  • Filer LJ Jr, Garattini S, Kare MR, Reynolds Wa, Wurtman RJ (eds) (1979) Glutamic acid: advances in biochemistry and physiology. Raven Press, New York

    Google Scholar 

  • Fonnum F (1981) The turnover of transmitter amino acids with special reference to GABA. In: Pycock CJ, Taberner PV (eds) Central neurotransmitter turnover. University Park Press, Baltimore, pp 105–124

    Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors. Brain Res Rev 7:103–164

    Google Scholar 

  • Foster AC, Fagg GE (1987) Taking apart NMDA receptors. Nature 329:395–396

    Google Scholar 

  • Foster GA, Roberts PJ (1980) Pharmacology of ecitatory amino acid receptors mediating the stimulation of rat cerebellar cyclic GMP levels in vitro. Life Sci 27:215–221

    Google Scholar 

  • Foster AC, Gill R, Iversen LL, Woodruff GN (1987) Systemic administration of MK-801 protects against ischaemia-induced hippocampal neurodegeneration in the gerbil. Br J Pharmacol 90:9

    Google Scholar 

  • Foster AC, Vezzani AM, French ED, Schwarcz R (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 48: 273–278

    Google Scholar 

  • Freed WJ, Michaelis EK (1978) Glutamic acid and ethanol dependence. Pharmacol Biochem Behav 8:509–514

    Google Scholar 

  • Freed WJ, Wyatt RJ (1981) Impairment of instrumental learning in rats by glutamic acid diethyl ester. Pharmacol Biochem Behav 14:223–226

    Google Scholar 

  • Forsch MP, Phillips MD, Aizenman E, Tauck DL, Lipton SA (1986) Nicotinic cholinergic blocking agents enhance process outgrowth by solitary tract retinal ganglion cells in culture. Soc Neurosci Abstr 12:1505

    Google Scholar 

  • Ganong AH, Cotman CW (1982) Acid amino acid antagonists of lateral perforant path synaptic transmission: agonist-antagonist interaction in the dentate gyrus. Neurosci Lett 34:195–200

    Google Scholar 

  • Garthwaite J (1982) Excitatory amino acid receptors and quanosine 3′5′-cyclic monophosphate in incubated slices of immature and adult rat cerebellum. Neuroscience 7:2491–2497

    Google Scholar 

  • Geddes JM, Chang-Chiu J, Cooper SM, Lott IT, Cotman CW (1986) Density and distribution of NMDA receptors in the human hippocampus in Alzheimer's disease. Brain Res 3–9: 156–161

    Google Scholar 

  • Goldman M, Stowe GE (1985) The modifying influence of aging on behaviour in mice neonatally injected with monosodium glutamate. Psychopharmacology (Berl) 86:359–364

    Google Scholar 

  • Greeley GH Jr, Nicholson GF, Nemeroff CB, Youngblood WW, Kizer JS (1978) Direct evidence that the arcuate nucleus-median eminence tuberoinfundibular system is not of primary importnce in the feedback regulation of luteinizing hormone and follicle-stimulating hormone secretion in the castrated rat. Endocrinology 103:170–175

    Google Scholar 

  • Greenamyre JT (1986) The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol 43:1058–1063

    Google Scholar 

  • Gustafsson B, Wigström H (1988) Physiological mechanisms underlying long term potentiation. Trends Neurosci 11:156–162

    Google Scholar 

  • Hablitz JJ, Langmoen IA (1982) Excitation of hippocampal pyramidal cells by glutamate in the guinea pig and rat. J Physiol (Lond) 325:317–331

    Google Scholar 

  • Halas ES, Eberhardt MJ, Diers MA, Sandstead HH (1983) Learning and memory impairment in adult rats due to severe zinc deficiency during lactation. Physiol Behav 30:371–381

    Google Scholar 

  • Hamakubo T, Kannagi R, Murachi T, Matus A (1990) J Neurosci (in press)

  • Harreveld A van (1977) Possible involvement of glutamate in postetanic potentiation and short term memory. In: Neuroregulators and psychiatric disorders. Oxford University Press, New York, p 626

    Google Scholar 

  • Harreveld A van, Fifkova E (1974) Involvement of glutamate in memory formation. Brain Res 81:455–467

    Google Scholar 

  • Harris EW, Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Neurosci Lett 70:132–137

    Google Scholar 

  • Harris EW, Ganong AH, Cotman CW (1984) Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res 323:132–137

    Google Scholar 

  • Hebb DO (1949) The organisation of behavior. Wiley, New York

    Google Scholar 

  • Heidelberg C, Guldberg ME, Morgan AF, Lepkovsky S (1949) Tryptophan metabolism. I. Concerning the mechanism of the mammalian conversion of tryptophan into kynurenine, kyurenic acid and nicotinic acid. J Biol Chem 179:143–150

    Google Scholar 

  • Ito M, Kano M (1982) Long lasting depression of parallel fibre-Purkinje cell transmission induced by conjunctive stimulation of parallel fibres and climbing fibres in the cerebellar cortex. Neurosci Lett 33:253–258

    Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sen sitivity of cerebellar Purkinje cells. J Physiol (Lond) 324:113–134

    Google Scholar 

  • Johnston GAR, Curtis DR, Davies J, McCulloch RM (1974) Spinal interneurone excitation by conformationally restricted analogues of L-glutamic acid. Nature 248:804–805

    Google Scholar 

  • Jones AW, Croucher MJ, Meldrum BS, Watkins JC (1984) Suppression of audiogenic seizures in DBA/2 mice by two new dipeptide NMDA receptor antagonists. Neurosci Lett 45:157–161

    Google Scholar 

  • Kano M, Kato M (1987) Quinsqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325:276–279

    Google Scholar 

  • Kater SB, Mattson MP (1988) Extrinsic and intrinsic regulators of neuronal outgrowht and synaptogenesis in identified Heliosoma neurons in isolated cell culture. In: Beadle DJ, Kater SB (eds) Cell culture approaches to invertebrate neurosciences. Academic Press, London

    Google Scholar 

  • Kato S, Higashida H, Higuchi Y, Hatakenaka S, Negishi K (1984) Sensitive and insensitive states of cultured glioma cells to glutamate damage. Brain Res 303:365–373

    Google Scholar 

  • Katz B (1966) Nerve, muscle and synapse. McGraw Hill, New York

    Google Scholar 

  • Katz RJ (1983) Neonatal monosodium glutamate differentially, alters two models of behavioral activity in conjunction with reduced hypothalamic endorphins. Physiol Behav 31:147–151

    Google Scholar 

  • Kauer JA, Malenka RC, Nicoll RA (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334:250–252

    Google Scholar 

  • Kawagoe R, Onodera K, Takeuchi A (1981) Release of glutamate from the crayfish neuromuscular junction. J Physiol (Lond) 312:225–236

    Google Scholar 

  • Kawagoe R, Onodera K, Takeuchi A (1982) On the quantal release of endogeneous glutamate from the crayfish neuromuscular junction. J Physiol (Lond) 322:529–539

    Google Scholar 

  • Kawagoe R, Onodera K, Takeuchi A (1984) The uptake and release of glutamate at the crayfish neuromuscular junction. J Physiol (Lond) 354:69–78

    Google Scholar 

  • Kleinschmidt A, Bear MF, Singer W (1987) Blockade of NMDA receptors disrupts experience dependent plasticity of kitten striate cortex. Science 238:355–358

    Google Scholar 

  • Knaape HH, Wiechert P (1970) Seizures after intracerebral injection of L-glutamate. J Neurochem 17:1171–1175

    Google Scholar 

  • Koch H (1954) Zum Problem der medikamentösen Behandlung des Schwachsinns bei Kindern; unter Auswertung von Glutaminsäureversuchen. Arch Psychiatr Nervenkr 191:463–477

    Google Scholar 

  • Lakshamanan J, Padmanaban G (1974) Effect of some strong excitants of central neurones on the uptake of L-glutamate and L-aspartate by synaptosomes. Biochem Biophys Res Commun 58:690–698

    Google Scholar 

  • Lankford KL, DeMello FG, Klein WL, (1986) Transient DI receptor mediates dopamine inhibition of growth core motility and neurite outgrowth in a subset vertebrate CNS neurons. Soc Neurosci Abstr 12:1116

    Google Scholar 

  • Lanthorn TH, Ganong AH, Cotman CW (1984) 2-amino-4-phosphono-butyrate selectively blocks mossy fiber—CA3 responses in guinea pig but not rat hippocampus. Brain Res 290:174–178

    Google Scholar 

  • Laroche S, Errington ML, Lynch MA, Bliss TV (1987) Increase in3H glutamate release from slices of dentate gyrus and hippocampus following classical conditioning in the rat. Behav Brain Res 25:23–29

    Google Scholar 

  • Lee K, Schottler F, Oliver M, Lynch G (1980) Brief bursts of high frequency stimulation produce two types of structural changes in rat hippocampus. J Neurophysiol 44:247–258

    Google Scholar 

  • Lehmann J, Scatton B (1982) Characterization of the excitatory amino acid receptor-mediated release of (3H) acetylcholine from rat striatal slices. Brain Res 252:77–89

    Google Scholar 

  • Lemkey-Johnston N, Reynolds WA (1974) Nature and extent of brain lesions in mice related to ingestion of monosodium glutamate. J Neuropathol Exp Neurol 33:74

    Google Scholar 

  • Levine ES (1949) Can we speed up a slow child? Volta Rev 51: 269–270

    Google Scholar 

  • Logan WJ, Snyder SH (1971) Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature 234:297–299

    Google Scholar 

  • Lucas DR, Newhouse JP (1957) The toxic effect of sodiuml-glutamate on the inner layers of the retina. Ann Am Ophthalmol 58:193–200

    Google Scholar 

  • Luini A, Goldberg O, Teichberg VI (1981) Distinct pharmacological properties of excitatory amino acid receptors in the rat striatum: study by Na+ efflux assay. Proc Natl Acad Sci USA 78:3250–3254

    Google Scholar 

  • Lynch G (1986) Synapses, circuits and the beginnings of memory. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Lynch G, Baudry M (1984) The biochemistry of memory: a new and specific hypothesis. Science 224:1057–1063

    Google Scholar 

  • Lynch G, Halpain S, Baudry M (1982) Effects of high-frequency synaptic stimulation on glutamate receptor binding studied with a modified in vitro hippocampal slice preparation. Brain Res 244:101–111

    Google Scholar 

  • Lynch MA, Errington ML, Bliss TVP (1985) Long-term potentiation of synaptic transmission in the dentate gyrus: increased release of14C glutamate without increease in receptor binding. Neurosci Lett 62:123–129

    Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Google Scholar 

  • MacDonald JF, Wojtowicz JM (1982) The effect ofl-glutamate and its analogues upon the membrane conductance of central murine neurones in culture. Can J Physiol Pharmacol 60:282–296

    Google Scholar 

  • Mamounas LA, Thompson RF, Lynch G, Baudry M (1984) Classical conditioning of the rabbit eyelid response increases glutamate receptor binding in hippocampal synaptic membranes. Proc Natl Acad Sci USA 81:2548–2552

    Google Scholar 

  • Maragos WF, Greenamyre JT, Penney JB, Young AB (1987) Glutamate dysfunction in Alzheimers disease: an hypothesis. Trends Neurosci 10:65–68

    Google Scholar 

  • Marchesi VT (1979) Spectrin: present status of a putative cytoskeletal protein of the red cell membrane. J Membr Biol 51: 101–131

    Google Scholar 

  • Marr DJ (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437–470

    Google Scholar 

  • Masaki M, Shinozaki H (1986) A new class of potent centrally acting muscle relaxants: pharmacology of oxazolidinones in rat decerebrate rigidity. Br J Pharmacol 89:219–228

    Google Scholar 

  • Masaki M, Morito N, Hashimoto K, Shinozaki H (1985) Synthesis of new glutamate inhibitors. J Pharmacol Dyn 8:173

    Google Scholar 

  • Mattson MP, Dou P, Kater SB (1987) Pruning of hippocampal pyramidal neuron dendritic architecture in vitro by glutamate and a protective effect of GABA plus diazepam. Soc Neurosci Abstr 13:367

    Google Scholar 

  • Mattson MP, Dou P, Kater SB (1988) Outgrowth regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci 8:2087–2100

    Google Scholar 

  • Mayer ML, Westbrook GL (1985) The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J Physiol (Lond) 361:65–90

    Google Scholar 

  • McBean GJ, Roberts PJ (1985) Neurotoxicity of L-glutamate and DL-threo-3-hydroxyaspartate in the rat striatum. J Neurochem 33:247–254

    Google Scholar 

  • McGeer EG, McGeer PL (1976) Duplication of biochemical changes of Huntington's chorea by intrastriatal injection of glutamate and kainic acid. Nature 263:517–519

    Google Scholar 

  • McGeer PL, McGeer EG, Hattori T (1978) Kainic acid as a tool in neurobiology. In: McGeer EG, Olney JW, McGeer PL (eds) Kainic acid as a tool in neurobiology. Raven Press, New York, pp 123–138

    Google Scholar 

  • McLennan H, Huffman RD, Marshall KC (1968) Patterns of excitation of thalamic neurones by amino acids and by acetylcholine. Nature 219:387–388

    Google Scholar 

  • Mehl J (1956) Über die Wirkung langdauernder Glutaminsäuregaben auf verschiedene Funktionsbereiche der Persönlichkeit. Z Psychol 159:1–57

    Google Scholar 

  • Mehraein P, Yamada M, Tarnowska-Dziduszko E (1975) Quantitative study on dendrites and dendritic spines in Alzheimer's disease and senile dementia. Adv Neurol 12:453–458

    Google Scholar 

  • Meldrum BS (1983) In: Delgado-Escueta AV, Waterlain CG, Treiman DM, Porter RJ (eds) Advances in neurology. Raven Press, New York, pp 261–275

    Google Scholar 

  • Meldrum BS (1985) Possible therapeutic applications of antagonists of excitatory amino acid neurotransmitters. Clin Sci 68:113–122

    Google Scholar 

  • Meldrum BS, Croucher MJ, Czuczwar SJ, Collins JF, Curry K, Joseph M, Stone TW (1983a) A comparison of the anticonvulsant potency of ±2 amino 5 phosphonopentanoic acid and ±2 amino 7 phosphonoheptanoic acid. Neuroscience 9:925–930

    Google Scholar 

  • Meldrum BS, Croucher MJ, Badman G, Collins JF (1983b) Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon,Papio papio. Neurosci Lett 39:101–104

    Google Scholar 

  • Meldrum BS, Wardley-Smith B, Halsey H, Rostain JC (1983c) 2 amino phosphoheptanoic acid protects against the high pressure neurological syndrome. Eur J Pharmacol 87:501–502

    Google Scholar 

  • Meldrum BS, Simon RP, Swan J, Evans MC, Griffiths T (1984) Calcium loading of mitochondria in ischemia and status epilepticus: its reversibility and significance for pathological outcome. In: Govoni S (ed) Calcium entry blockers and tissue protection. Raven Press, New York

    Google Scholar 

  • Mex A, Hirsch W, Vogel F (1963) Untersuchungen an den Aminosäuren im Serum schwachsinninger und gesunder Kinder mit Hilfe der Säulenchromatographie. Monatsschr Kinderheilkd III:421–424

    Google Scholar 

  • Milliken JR, Standen JL (1951) An investigation into the effects of glutamic acid on human intelligence. J Neurol Neurosurg Psychiatry 14:47–54

    Google Scholar 

  • Miltner B, Sahai S: 2-amino-4-phosphonobutyrate inhibits human GDH and GABA-T. (To be published)

  • Monaghan DT, Cotman CW (1986) Distribution of N-methyl-D-aspartate sensitive L-3H glutamate binding sites in rat brain. J Neurosci 5:2909–2919

    Google Scholar 

  • Moret C, Briley M (1988) The “forgotten” amino acid pyroglutamate. Trends Pharmacol Sci 9:278–279

    Google Scholar 

  • Moroni F, Luzzi S, Franchi-Micheli S, Zilletti F (1986) The presence of NMDA-type receptors for glutamic acid in the guinea pig myenteric plexus. Neurosci Lett 68:57–62

    Google Scholar 

  • Moroni F, Russi P, Lombardi G, Beni M, Carlà V (1988) Presence of kynurenic acid in the mammalian brain. Neurochem 51: 177–180

    Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 219:774–776

    Google Scholar 

  • Morris RGM, Magan JJ, Nadel L, Jensen J, Baudry M, Lynch GS (1987) Spatial learning in the rat: impairment induced by the thiolproteinase inhibitor, leupeptin, and an analysis of H3 glutamate receptor binding in relation to learning. Behav Neural Biol 47:333–345

    Google Scholar 

  • Morris RGM, Kandel ER, Squire LR (1988) The neuroscience of learning and memory: cells, neural circuits and behaviour. Trends Neurosci 11:125–127

    Google Scholar 

  • Müller P (1953a) Die Wirkung der Glutaminsäure im Strafvollzug. Psychol Rundschau 4:200–206

    Google Scholar 

  • Müller R (1953b) Pharmakopsychologische Beeinflussung technischer Leistung. Zentralbl Arbeitswiss Betriebspraxis 7:97–102

    Google Scholar 

  • Müller R (1955) Psychologische Wirkwerte der kristallinen L(+) Glutaminsäure, der Gamma-Aminobuttersäure und komplexer Eiweiße. Arzneimittelforschung 5:1–12

    Google Scholar 

  • Müller R (1959) Psychische Verhaltensänderungen durch Aminosäuren. In: Actes du XV Congrés International de Psychologie. Elsevier, Amsterdam, pp 195–197

    Google Scholar 

  • Musajo DL, Copini D (1951) La determinazione degli acidi chinurenico e xanturenico. Experientia 7:20–26

    Google Scholar 

  • Nelson PG, Pun RYK, Westbrook GL (1986) Synaptic excitation in cultures of mouse spinal cord neurones: receptor pharmacology and behaviour of synaptic currents. J Physiol (Lond) 372:169–190

    Google Scholar 

  • Nemeroff CB, Crisley FD (1975) Monosodium L-glutamate-induced convulsions: temporary alteration in blood-brain barrier permeability to plasma proteins. Environ Physiol 5:389–395

    Google Scholar 

  • Nicoletti F, Valerio C, Pellegrino C, Drago F, Scapagnini U, Canonico PL (1988) Spatial learning potentiates the stimulation of phospho-inositide hydrolysis by excitatory amino acids in rat hippocampal slices. J Neurochem 51:725–729

    Google Scholar 

  • Nistri A, Arenson MS, King A (1985) Excitatory amino acid-induced responses of frog motoneurones bathed in low Na+ media: an intracellular study. Neuroscience 14:921–927

    Google Scholar 

  • Nowak L, Bregestowski P, Ascher P, Herbert A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Google Scholar 

  • Olney JW (1971) In: Spencer PR, Schaumburg HE (eds) Experimental and clinical neurobiology. Williams and Wilkins, Baltimore, pp 272–294

    Google Scholar 

  • Olney jW (1980) Excitotoxic mechanisms of neurotoxicity. In: Spencer PS, Schaumburg HH (eds) Experimental and clinical neurotoxicity. Williams and Wilkins, Baltimore, pp 272–294

    Google Scholar 

  • Olney JW, Gubareff T de (1978) Extreme sensitivity of olfactory cortical neurons to kainic acid toxicity. In: McGeer EG, Olney JW, McGeer PL (eds) Kainic acid as a tool in neurobiology. Raven Press, New York, pp 201–218

    Google Scholar 

  • Olney JW, Rhee V, Ho LO (1974) Kainic acid a powerful neurotoxic analogue of glutamate. Brain Res 77:507–512

    Google Scholar 

  • Ozaki HS, Murakami TH, Shimada M (1983) Learning deficits on avoidance task and hippocampal lesions in area CA3 following intraperitoneal administration of 3-acetylpyridine. J Neurosci Res 10:425–435

    Google Scholar 

  • Pallister PD, Stevens RR (1957) Effects of glutamic acid on behaviour, intelligence and physiology. Rocky Mount Med J 54: 1014–1017

    Google Scholar 

  • Paul LA, Scheibel AB (1986) Structural substrates of epilepsy. Adv Neurol 44:775–786

    Google Scholar 

  • Perkins MN, Stone TW (1982) An iontophoretic investigation of the action of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187

    Google Scholar 

  • Petty F, McChesney C, Kramer G (1985) Intracortical glutamate injection produces helpless-like behaviour in the rat. Pharmacol Biochem Behav 22:531–533

    Google Scholar 

  • Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16:187–239

    Google Scholar 

  • Pond DA, Pond MH (1951) Glutamic acid and its salts in epilepsy. J Ment Sci 97:663–673

    Google Scholar 

  • Prusiner SB (1981) Disorders of glutamate metabolism and neurological dysfunction. Annu-Rev Med 32:521–542

    Google Scholar 

  • Purves D, Hadley RD, Voyvodic J (1986) Dynamic changes in the dendritic geometry of individual neurons visualised over periods of up to 3 months in the superior cervical ganglion of living mice. J Neurosci 6:1051–1060

    Google Scholar 

  • Ralston GB (1978) The structure of spectrin and the shape of the red blood cell. Trends Biochem Sci 3:195–198

    Google Scholar 

  • Rauschecker JP, Hahn S (1987) Ketamine-xylazine anaesthesia blocks consolidation of ocular dominance changes in kitten visual cortex. Nature 326:183–185

    Google Scholar 

  • Redding TW, Schally AV, Arimura A, Wakayabashi I (1971) Effect of monosodium glutamate on some endocrine functions. Neuroendocrinology 8:245–255

    Google Scholar 

  • Regunathan S, Sundaresan R (1985) Effects of organic and inorganic lead on synaptosomal uptake, release, and receptor binding of glutamate in young rats. J Neurochem 44:1642–1646

    Google Scholar 

  • Retz KC, Coyle J (1984) The differential effects of excitatory amino acids on uptake of45CaCl2 by slices from mouse striatum. Neuropharmacology 23:89–94

    Google Scholar 

  • Ribeiro JA, Sebastio AM (1987) In: Topics and perspectives in adenosine research. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Roberts PJ, Storm-Mathisen J, Johnston GAR (1981) Glutamate transmitter in the central nervous system. Wiley, Chichester

    Google Scholar 

  • Robinson MB, Anderson KD, Koerner JF (1984) Kynurenic acid as an antagonist of hippocampal excitatory transmission. Brain Res 309:119–126

    Google Scholar 

  • Rodriguez-Sierra JF, Sridaran R, Blake CA (1980) Monosodium glutamate disruption of behavioral and endocrine function in the female rat. Neuroendocrinology 31:228–235

    Google Scholar 

  • Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891

    Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111

    Google Scholar 

  • Sahai S, Buselmaier W, Brussmann A (1985) 2-amino-4-phosphonobutyric acid selectively blocks two-way avoidance learning in the mouse. Neurosci Lett 56:137–142

    Google Scholar 

  • Sakurai M (1985) Long-term depression of parallel fibre-Purkinje cell synapses in vitro. Neurosci Lett [Suppl] 22:S26

    Google Scholar 

  • Schwarcz R, Coyle JT (1977) Striatal lesions with kainic acid: neurochemical characteristics. Brain Res 127:235–249

    Google Scholar 

  • Schwarcz R, Meldrum B (1985) Excitatory amino acid antagonists provide a therapeutic approach to neurological disorders. Lancet II:140–143

    Google Scholar 

  • Schwarcz R, Shoulson I (1987) Excitotoxins and Huntingtons disease. In: Coyle JT (ed) Neurology and Neurobiology, vol 22. Animal models of dementia: a synaptic neurochemical perspective. New York, pp 39–68

  • Schwarcz R, Scholz D, Coyle JT (1978) Structure-activity relations for the neurotoxicity of kainic acid derivates and glutamate analogues. Neuropharmacology 17:145–151

    Google Scholar 

  • Schwarcz R, Foster AC, French ED, Whetsell WO Jr, Köhler C (1984) Excitotoxic models for neurodengenerative disorders. Life Sci 35:19–32

    Google Scholar 

  • Schwöbel G, Tamm J (1952) Reaktionszeitmessungen bis Glutaminsäurezufuhr. Klin Wochenschr 30:750–755

    Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Google Scholar 

  • Shinozaki H (1988) Pharmacology of the glutamate receptor. Prog Neurobiol 30:399–435

    Google Scholar 

  • Shinozaki H, Ishida M (1979a) Pharmacological distinction between the excitatory junctional potential and the glutamate potential revealed by concanavalin A at the crayfish neuromuscular junction. Brain Res 161:493–501

    Google Scholar 

  • Shinozaki H, Ishida M (1979b) Glutamate potential: differences from the excitatory junctional potential revealed by dialtiazem and concanavalin A in crayfish neuromuscular junction. J Physiol (Paris) 75:623–627

    Google Scholar 

  • Shinozaki H, Konishi S (1970) Actions of several anthlemintics and insectizides on rat cortical neurones. Brain Res 24:368–371

    Google Scholar 

  • Shinozaki H, Hirate K, Ishida M (1987) Modification of drug-induced tremor by systemic administration of kainic acid and quisqualic acid in mice. Neuropharmacology 26:9–17

    Google Scholar 

  • Siegenthaler W, Kaufmann W, Hornbostel H, Weller HD (1984) Lehrbuch der inneren Medizin. Thieme, Stuttgart, p 27

    Google Scholar 

  • Simon RP, Swan JH, Griffith T, Meldrum BS (1984a) Pharmacologic blackade of excitatory amino acid neurotransmission attenuates the neuropathologic damage of ischemia. Ann Neurol 16:112

    Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984b) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852

    Google Scholar 

  • Sinet PM (1972) Contribution a l'analyze statistique des resultats de dosage d'acides amines sanguins. Thèse pour le Doctorat en Medicine, Université René Descarté, Paris

    Google Scholar 

  • Sladeczek F, Pin JP, Récasens M, Bockaert J, Weiss S (1985) Glutamate stimulates inosital phosphate formation in striatal neurons. Nature 317:717–719

    Google Scholar 

  • Slater NT, Stelzer A, Galvan M (1985) Kindling like stimulus patterns induce epileptiform discharges in the guinea pig in vitro hippocampus. Neurosci Lett 60:25–31

    Google Scholar 

  • Slevin JT, Kasarskis EJ (1985) Effects on zinc on markers of glutamate aspartate neurotransmission in rat hippocampus. Brain Res 334:281–286

    Google Scholar 

  • Storm-Mathisen J (1981) Glutamate in hippocampal pathways. In: Di Chiara G, Gessa GL (eds) Glutamate as a neurotransmitter. Raven Press, New York, pp 43–55

    Google Scholar 

  • Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FMS, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520

    Google Scholar 

  • Szot P, Sanders RC, Murray TF (1987) Theophylline induced upregulation of A,-Adenosine receptors associated with reduced sensitivity to convulsants. Neuropharmacology 26:1173–1180

    Google Scholar 

  • Takeuchi A, Takeuchi N (1964) The effect on crayfish muscle of iontophoretically applied glutamate. J Physiol (Lond) 170:269–317

    Google Scholar 

  • Thompson RF, Barchas JD, Clark GA, Donegan N, Kettner RE (1983) Neuronal substrates of associative learning in the mammalian brain. In: Alkan DL, Farley J (eds) Primary neural substrates of learning and behavioral change. Princeton University Press, Princeton

    Google Scholar 

  • Thomson AM (1986) A magnesium sensitive post-synaptic potential in rat cerebral cortex resembles neuronal responses to N-methly-aspartate. J Physiol (Lond) 370:531–549

    Google Scholar 

  • Turski L, Schwarcz M, Turski WA, Klockgether T, Sontag KH, Collins JF (1984) Excitatory amino acid antagonists: a potential class of muscle relaxant drugs. Neurosci Lett [Suppl] 18:363

    Google Scholar 

  • Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WO Jr, Schwarcz R (1988) Identification and quantification of kynurenic acid in human brain tissue. Brain Res 454:164–169

    Google Scholar 

  • Viana Di Prisco G (1984) Hebb synaptic plasticity. Prog Neurobiol 22:89–102

    Google Scholar 

  • Vogel W, Broverman DM, Draguns JG, Klaiber EL (1966) The role of glutamic acid in cognitive behaviours. Psychol Bull 65:367–382

    Google Scholar 

  • Walker JE (1983) Glutamate, GABA and CNS disease: a review. Neurochem Res 8:521–550

    Google Scholar 

  • Waller MB, Richter JA (1980) Effects of pentobarbital and Ca2+ on the resting and K+-stimulated release of several endogenous neurotransmitters from rat midbrain slices. Biochem Pharmacol 29:2189–2198

    Google Scholar 

  • Wardley-Smith B, Meldrum BS, Halsey MJ (1984) The high pressure neurological syndrome and 2-amino-7-phosphonoheptanoic acid: differences between fed and fasted rats. Neurosci Lett 48:155–160

    Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204

    Google Scholar 

  • Wakins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10:265–272

    Google Scholar 

  • Weil-Malherbe H (1936) Studies on brain metabolism. I. The metabolism of glutamic acid in the brain. Biochem J 30:665–676

    Google Scholar 

  • Wieloch T (1985) Neurochemical correlates to selective neuronal vulnerability. Prog Brain Res 63:69–85

    Google Scholar 

  • Wolf M (1974) Studies on tryptophan metabolism in man. Scand J Clin Lab Invest 136S:1–186

    Google Scholar 

  • Yamamoto C, Sawada S, Takada S (1983) Suppressing action of 2-amino-4-phosphonobutyric acid on mossy fiber induced excitation in the guinea pig hippocampus. Exp Brain Res 51:128–134

    Google Scholar 

  • Zaczek R, Coyle JT (1982) Excitatory amino acid analogues neurotoxicity and seizures. Neuropharmacology 21:15–26

    Google Scholar 

  • Zimmerman FT, Burgmeister BB (1950) The effect of glutamic acid upon borderline and high grade defective intelligence. NY State J Med 50:693–697

    Google Scholar 

  • Zimmerman FT, Burgmeister BB (1959) A controlled experiment of glutamic acid therapy. First report summarising thirteen years of study. Arch Neurol 81:639–648

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahai, S. Glutamate in the mammalian CNS. Eur Arch Psychiatry Clin Nuerosci 240, 121–133 (1990). https://doi.org/10.1007/BF02189982

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02189982

Key words

Navigation