Skip to main content
Log in

A genetically engineered mosquitocidal cyanobacterium

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Larvae of the mosquitoAedes aegypti ingested, and developed into adults, on a diet of 1O of 14 different species of cyanobacteria includingAgmenellum quadruplicatum PR-6 (=Synechococcus PCC7002). Mosquito larvae ingested and grew on cells of PR-6 adapted to growth in the absence of NaCl. ThecryIVD gene ofBacillus thuringiensis var.israelensis was cloned into a PR-6 expression vector to form pAQRM56, which was transformed into PR-6. Expression of the CryIVD protein in PR-6 was demonstrated by immunocytochemistry and larvicidal activity. Immunogold labelling indicated production of an electron-dense material among the thylakoid membranes of PR-6. Cells of PR-6 carrying pAQRM56 were toxic to the larvae ofA. aeqypti whereas control cells were not. Growth of PR-6 cells carrying pAQRM56 was slower than the growth of control cells and these cells were also larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angsuthanasombat C, Panyim S (1989) Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacteriumAgmenellum quadruplicatum PR-6. Appl. environ. Microbiol. 55: 2428–2430.

    Google Scholar 

  • Aronson AJ, Beckman W, Dunn P (1986)Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50: 1–24.

    Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513–1523.

    Google Scholar 

  • Buzby JS, Porter RD, Stevens Jr SE (1990) Biphasic shuttle vectors. United States Patent Number 4, 956, 280.

  • Chilcott CN, Ellar DJ (1988) Comparative toxicity ofBacillus thuringiensis var.israelensis crystal proteinsin vivo andin vitro. J. gen. Microbiol. 134: 2551–2558.

    Google Scholar 

  • Chilcott CN, Knowles BH, Ellar DJ, Drobniewski FA (1990) Mechanism of action ofBacillus thuringiensis israelensis parasporal body.In de Barjac H, Sutherland DJ (eds) Bacterial Control of Mosquitoes & Black Flies. Rutgers University Press, New Brunswick: 45–65.

    Google Scholar 

  • Chungjatupornchai W (1990) Expression of the mosquitocidal-protein genes ofBacillus thuringiensis subsp.israelensis and the herbicide-resistance genebar inSynechocystis PCC6803. Curr. Microbiol. 21: 283–288.

    Google Scholar 

  • Dadd RH (1971) Effects of size and concentration of particles on rates of ingestion of latex particulates by mosquito larvae. Ann. entomol. Soc. Amer. 64: 687–692.

    Google Scholar 

  • Davidson EW, Yamamoto T (1984) Isolation and assay of the toxic component from the crystals ofBacillus thuringiensis var.sraelensis. Curr. Microbiol. 11: 171–174.

    Google Scholar 

  • de Barjac H (1978a) Une novelle varieté deBacillus thuringiensis tres toxique pour les moustiques:B. thuringiensis var.israelensis serotype 14. C. R. Acad. Sci (Paris) 286d: 797–800.

    Google Scholar 

  • de Barjac H (1978b) Étude cytologique de l'action deBacillus thuringiensis var.israelensis sur larvas de moustiques. C. R. Acad. Sci (Paris) 286d: 1629–1632.

    Google Scholar 

  • de Barjac H (1990) Characterization and prospective view ofBacillus thuringiensis israelensis. In de Barjac H, Sutherland DJ (eds), Bacterial Control of Mosquitoes & Black Flies. Rutgers University Press, New Brunswick: 10–15.

    Google Scholar 

  • Delecluse A, Charles JF, Klier A, Rapoport G (1991) Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide fromBacillus thuringiensis subsp.israelensis is not essential for mosquitocidal activity. J. Bact. 173: 3374–3381.

    Google Scholar 

  • Donovan WP, Dankocsik C, Gilbert MP (1988) Molecular characterization of a gene encoding a 72-kilodalton mosquito- toxic crystal protein fromBacillus thuringiensis subsp.israelensis. J. Bact. 170: 4732–4738.

    Google Scholar 

  • Federici BA, Luthy P, Ibarra JE (1990) Parasporal body ofBacillus thuringiensis israelensis. In de Barjac H, Sutherland DJ (eds), Bacterial Control of Mosquitoes & Black Flies. Rutgers University Press, New Brunswick: 16–44.

    Google Scholar 

  • Goldberg LH, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity againstAnopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti andCulex pipiens. Mosq. News 37: 355–358.

    Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins ofBacillus thuringiensis. Microbiol. Rev. 53: 242–255.

    Google Scholar 

  • Hurley JM, Lee SG, Andrews Jr RE, Klowden MJ, Bulla Jr LA (1985) Separation of the cytolytic and mosquitocidal proteins ofBacillus thuringiensis subsp.israelensis. Biochem. biophys. Res. Commun. 126: 961–965.

    Google Scholar 

  • Lacey LA, Undeen AH (1986) Microbial control of black flies and mosquitoes. Annu. Rev. Entomol. 31: 265–296.

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 545 pp.

    Google Scholar 

  • Margalit J, Dean D (1985) The story ofBacillus thuringiensis var.israelensis (B. t. i.). J. Am. mosq. Cont. Assoc. 1: 1–7.

    Google Scholar 

  • Mulla MS (1990) Activity, field efficiency, and use ofBacillus thuringiensis israelensis against mosquitoes. In de Barjac H, Sutherland DJ (eds), Bacterial Control of Mosquitoes & Black Flies, Rutgers University Press, New Brunswick: 134–160.

    Google Scholar 

  • Murphy RC, Stevens Jr SE (1992) Cloning and expression of thecryIVD gene ofBacillus thuringiensis subsp.israelensis in the cyanobacteriumAgmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. environ. Microbiol. 58: 1650–1655.

    Google Scholar 

  • Murphy RC, Gasparich GE, Bryant DA, Porter RD (1990) Nucleotide sequence and further characterization of theSynechococcus sp. strain PCC 7002recA gene: complementation of a cyanobacterialrecA mutation by theEscherichia coli recA gene. J. Bact. 172: 967–976.

    Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL, Stevens Jr SE (1983) Three-dimensional ultrastructure of a unicellular cyanobacterium. J. Cell Biol. 97: 713–722.

    Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354.

    Google Scholar 

  • Soltes-Rak E, Kushner DJ, Williams DD, Coleman JR (1993) Effect of promoter modification on mosquitocidalcryIVB gene expression inSynechococcus sp. strain PCC 7942. Appl. environ. Microbiol. 59: 2404–2410.

    Google Scholar 

  • Stevens Jr SE, Porter RD (1980) Transformation inAgmenellum quadruplicatum. Proc. natl. Acad. Sci. USA 77: 6052–6056.

    Google Scholar 

  • Stevens Jr SE, Patterson COP, Myers J (1973) The production of hydrogen peroxide by blue-green algae: a survey. J. Phycol. 9: 427–430.

    Google Scholar 

  • Theivendirarajah K, Jeyaseelan K (1977) The ingestion of blue-green algae by mosquito larvae. Ceylon J. Sci. 12: 156.

    Google Scholar 

  • Thiery I, Nicolas L, Rippka R, Tandeau de Marsac N (1991) Selection of cyanobacteria isolated from mosquito breeding sites as a potential food source for mosquito larvae. Appl. environ. Microbiol. 57: 1354–1359.

    Google Scholar 

  • Thomas WE, Ellar DJ (1983)Bacillus thuringiensis var.israelensis crystal δ-endotoxin: effects on insect and mammalian cellsin vitro andin vivo. J. Cell. Sci. 60: 181–197.

    Google Scholar 

  • Waalwijk C, Dullemans AM, van Workum MES, Visser B (1985) Molecular cloning and the nucleotide sequence of the Mr 28 000 crystal protein gene ofBacillus thuringiensis subsp.israelensis. Nucleic Acids Res. 13: 8207–8217.

    Google Scholar 

  • Ward ES, Ridley AR, Ellar DJ, Todd JA (1986)Bacillus thuringiensis var.israelensis crystal δ-endotoxin: cloning and expression of the toxin in sporangic and asporangic strains ofBacillus subtillus. J. mol. Biol. 191: 13–22.

    Google Scholar 

  • World Health Organization (1989) Geographical Distribution of Arthropod-borne Diseases and Their Principal Vectors. Vector Biology and Control Division, Geneva, 249 pp.

    Google Scholar 

  • Xudong X, Renqiu K, Yuxiang H (1993) High larvicidal activity of intact recombinant cyanobacteriumAnabaena sp. PCC 7120 expressing gene 51 and gene 42 ofBacillus sphaericus sp. 2297. FEMS Microbiol. Lett. 107: 247–250.

    Google Scholar 

  • Yamamoto T, Iizuka T, Aronson JN (1983) Mosquitocidal protein ofBacillus thuringiensis subsp.israelensis: identification and partial isolation of the protein. Curr. Microbiol. 9: 279–284.

    Google Scholar 

  • Yamamoto T, Watkinson IA, Kim L, Sage MV, Stratton R, Akande N, Li Y, Ma DP, Roe BA (1988) Nucleotide sequence of the gene coding for a 130-kDa mosquitocidal protein ofBacillus thuringiensis var.israelensis. Gene 66: 107–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, S.E., Murphy, R.C., Lamoreaux, W.J. et al. A genetically engineered mosquitocidal cyanobacterium. J Appl Phycol 6, 187–197 (1994). https://doi.org/10.1007/BF02186072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186072

Key words

Navigation