Skip to main content
Log in

Mechanisms of response to salinity in halotolerant microalgae

  • Mechanisms of Salt Tolerance in Algae and Terrestrial Plants
  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

A limited number of organic solutes are used by microalgae to adjust their internal osmotic pressure in response to changing external salinities. Glycerol and proline are used by the most extremely halotolerant algae. Only glycerol allows growth at salinities approaching saturation. In addition to organic osmoregulatory solutes, inorganic ions also play an important role in osmoregulation. The ability of microalgae to maintain intracellular ions at levels compatible with metabolic functions may set upper limits for their salt tolerance. Requirements for NaCl in the external medium for nutrient transport may define the lower salinity limits for growth observed for some euryhaline algae.

Osmotic upshocks generally cause severe temporary inhibition of photosynthesis in euryhaline microalgae. Extensive osmotic downshocks have little effect on photosynthesis in microalgae with strong cell walls, while wall-less species appear to be more sensitive. Rapid glycerol synthesis takes place in response to increased external salinity inChlamydomonas pulsatilla both in light and dark. Starch supplies carbon for glycerol synthesis in the dark and also during the initial periods of inhibition of photosynthesis in the light. Turnover of osmoregulatory solutes such as glycerol and isofloridoside may be an important aspect of the osmoregulatory mechanism.

At salinities beyond the growth limit for the green flagellateChlamydomonas pulsatilla, resting spores are formed that enable this alga to survive extreme salinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad I and Hellebust J A 1984 Osmoregulation in the extremely euryhaline marine microalgaChlorella autotrophica. Plant Physiol. 74, 1010–1015.

    Google Scholar 

  2. Ben-Amotz A and Avron M 1972 Photosynthetic activities of the halophilic algaDunaliella parva. Plant Physiol. 49, 240–243.

    Google Scholar 

  3. Ben-Amotz A and Avron M 1980 Osmoregulation in the halophilic algae Dunaliella and Asteromonas.In Genetic Engineering of Osmoregulation. Eds. D W Rains, R C Valentine and A Hollaender. pp 91–99. Plenum Press, New York.

    Google Scholar 

  4. Bergmeyer U 1970 Methoden der Enzymatischen Analyse, Vol. II. pp 1267–1372. Verlag Chemie, Weinheim.

    Google Scholar 

  5. Borowitzka L J, Kessly D S and Brown A D 1977 The salt relations of Dunaliella. Arch. Microbiol. 113, 131–138.

    Article  PubMed  Google Scholar 

  6. Brown A D and Borowitzka L J 1979 Halotolerance of Dunaliella.In Biochemistry and Physiology of Protozoa. Eds. M Levandowsky and S H Hunter. pp 139–190. Academic Press, New York.

    Google Scholar 

  7. Brown L M 1982 Photosynthetic and growth responses to salinity in a marine isolate ofNannochloris bacillaris (Chlorophyceae). J. Phycol. 18, 483–488.

    Article  Google Scholar 

  8. Brown L M and Hellebust J A 1980 The contribution of organic solutes to osmotic balance in some green and eustigmatophyte algae. J. Phycol. 16, 265–270.

    Article  Google Scholar 

  9. Brown L M and Hellebust J A 1980 Some new taxonomic characteristics applied toStichococcus bacillaris (Chlorophyceae). Can. J. Bot. 58, 1405–1411.

    Google Scholar 

  10. Cattle M 1935 Estimation of small amounts of chlorine in plant tissue. New Phytol. 34, 151–154.

    Google Scholar 

  11. Ehrenfeld J and Coussin J-L 1984 Ionic regulation of the unicellular green algaDunaliella tertiolecta: response to hypertonic shock. J. Membr. Biol. 77, 45–55.

    Article  Google Scholar 

  12. Gilles R and Pequeux A 1977 Effect of salinity on the free amino acid pool of the red algaPorphyridium purpureum (=P. cruentum). Comp. Biochem. Physiol. 57A, 183–185.

    Article  Google Scholar 

  13. Gilmour J, Hipkins M F and Boney A D 1984 The effect of osmotic and ionic stress on the primary processes of photosynthesis inDunaliella tertiolecta. J. Exp. Bot. 35, 18–27.

    Google Scholar 

  14. Gilmour J, Hipkins M F and Boney A D 1984 The effect of decreasing the external salinity on the primary processes of photosynthesis inDunaliella tertiolecta. J. Exp. Bot. 35, 28–35.

    Google Scholar 

  15. Gimmler H and Moller E-M 1981 Salinity-dependent regulation of starch and glycerol metabolism inDunaliella parva. Plant Cell Environ. 4, 367–375.

    Google Scholar 

  16. Gimmler H and Schirling R 1978 Cation permeability of the plasmalemma of the halotolerant algaDunaliella parva. II. Cation content and glycerol concentration of the cells as dependent upon extracellular NaCl concentrations. Z. Pflanzenphysiol. 87, 435–444.

    Google Scholar 

  17. Ginzburg M 1981 Measurements of ion concentrations and fluxes inDunaliella parva. J. Exp. Bot. 32, 321–332.

    Google Scholar 

  18. Ginzburg M 1981 Measurements of ion concentrations inDunaliella parva subjected to hypertonic shock. J. Exp. Bot. 32, 333–340.

    Google Scholar 

  19. Guillard R R L 1960 A mutant ofChlamydomonas moewussii lacking contractile vacuoles. J. Protozool. 7, 262–268.

    Google Scholar 

  20. Guillard R R L and Ryther J H 1962 Studies of marine planktonic diatoms. I.Cyclotella nana Hustedt, andDetonula confervaceae (Cleve) Gran. Can. J. Microbiol. 8, 229–239.

    Google Scholar 

  21. Hellebust J A 1965 Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10, 192–206.

    Google Scholar 

  22. Hellebust J A 1976 Osmoregulation. Annu. Rev. Plant Physiol. 27, 485–505.

    Article  Google Scholar 

  23. Hellebust J A 1976 Effect of salinity on photosynthesis and mannitol synthesis in the green flagellatePlatymonas suecica. Can. J. Bot. 54, 1735–1741.

    Google Scholar 

  24. Hellebust J A 1978 Uptake of organic substrates byCyclotella cryptica (Bacillariophyceae): effects of ions, inophores and metabolic and transport inhibitors. J. Phycol. 14, 79–83.

    Google Scholar 

  25. Kauss H 1974 Osmoregulation in Ochromonas.In Membrane Transport in Plants. Eds. U Zimmermann and J Dainty. pp 90–94. Springer-Verlag, Berlin.

    Google Scholar 

  26. Kauss H 1978 Osmotic regulation in algae. Progr. Phytochem. 5, 1–27.

    Google Scholar 

  27. Kauss H 1981 Sensing of volume changes by Poterioochromonas involves a Ca2+-regulated system which controls activation of isofloridoside-phosphate synthase. Plant Physiol. 68, 420–424.

    Google Scholar 

  28. Kessly D S and Brown A D 1981 Salt relations of Dunaliella. Transitional changes in glycerol content and oxygen exchange reactions in water stress. Arch. Microbiol. 129, 154–159.

    Article  Google Scholar 

  29. Latorella A H and Vadas R L 1973 Salinity adaptation byDunaliella tertiolecta: I. Increase in carbonic anhydrase activity and evidence for a light-dependent Na+/H+ exchange. J. Phycol. 9, 273–277.

    Google Scholar 

  30. Le Gresley S M L 1979 Osmoregulation in a euryhaline green flagellate. M. Sc. Thesis, Department of Botany, University of Toronto.

  31. Liu M-S and Hellebust J A 1976 Effect of salinity changes on growth and metabolism of the marine centric diatomCyclotella cryptica. Can. J. Bot. 54, 930–937.

    Google Scholar 

  32. McLachlan J 1960 The culture ofDunaliella tertiolecta Butcher—a euryhaline organism. Can. J. Microbiol. 6, 367–379.

    Google Scholar 

  33. McLachlan J 1964 Some considerations of the growth of marine algae in artificial media. Can. J. Microbiol. 10, 769–782.

    PubMed  Google Scholar 

  34. Munns R, Greenway H and Kirst G O 1983 Halotolerant eukaryotes.In Encyclopedia of Plant Physiology, N. S. Vol. 12C. Physiological Plant Ecology III. Eds. O L Lange, P S Nobel, C B Osmond and H Ziegler. pp 59–135. Springer-Verlag, Berlin.

    Google Scholar 

  35. Setter T L and Greenway H 1979 Growth and osmoregulation ofChlorella emersonii in NaCl and neutral osmotica. Aust. J. Plant Physiol. 6, 47–60.

    Google Scholar 

  36. Setter T L and Greenway H 1983 Changes in the proportions of endogenous osmotic solutes accumulated byChlorella emersonii in the light and dark. Plant Cell Environ. 6, 227–234.

    Google Scholar 

  37. Schobert B 1974 The influence of water stress on the metabolism of diatoms. I. Osmotic resistance and proline accumulation inCyclotella meneghiniana. Z. Pflanzenphysiol. 74, 106–120.

    Google Scholar 

  38. Schobert B, Untner E and Kauss H 1972 Isofloridoside und die Osmoregulation beiOchromonas malhamensis. Z. Pflanzenphysiol. 67, 385–398.

    Google Scholar 

  39. Wetherell D F 1963 Osmotic equilibrium and growth ofScenedesmus obliquus in saline media. Physiol. Plant. 16, 82–91.

    Google Scholar 

  40. Wheeler P A 1980 Use of methylammonium as an ammonium analogue in nitrogen transport and assimilation studies withCyclotella cryptica (Bacillariophyceae). J. Phycol. 16, 328–334.

    Google Scholar 

  41. Wyn Jones R G and Gorham J 1983 Osmoregulation.In Encyclopedia of Plant Physiology, N.S. Vol. 12C. Physiological Plant Ecology III. Eds. O L Lange, P S Nobel, C B Osmond and H Ziegler, pp 35–38. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellebust, J.A. Mechanisms of response to salinity in halotolerant microalgae. Plant Soil 89, 69–81 (1985). https://doi.org/10.1007/BF02182234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02182234

Key words

Navigation