Skip to main content
Log in

Strategies for improving antitumor activity utilizing IL-2: Preclinical models and analysis of antitumor activity of lymphocytes from patients receiving IL-2

  • Published:
Biotherapy

Conclusions

Considerable enthusiasm remains for the successful utilization of the immune system for the immunotherapy of human cancers. Immunotherapeutic maneuvers have been able to mediate impressive antitumor responses for some patients with advanced and refractory malignancies. Unfortunately, the number of patients who benefit from current immunotherapies is low, while the toxicity for many of the patients receiving these treatments is high. It is becoming quite clear that the development of successful immunotherapeutic strategies will involve a carefully chosen combination of immunotherapeutic modalities or of immunotherapy combined with either surgery, radiation therapy, or chemotherapy. The use of an IL-2 based regimen which is clinically tolerable and can provide significant immune activation continues to remain central to many of these treatment approaches. Preclinicalin vitro and animal model systems can evaluate promising treatment strategies, including combination approaches. As an effective immunotherapeutic approach will likely require use of a combination of biologically active agents, the scheduling of these therapies may have profound importance both for optimal antitumor responses as well as clinical tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenberg SA, Lotze MT. Cancer immunotherapy using interleukin-2 and interleukin-2 activated lymphocytes. Ann Rev Immunol 1986; 4: 681–709.

    Google Scholar 

  2. Bach FH, Sachs DH. Transplant immunology. N Engl J Med 1987; 317: 489–92.

    Google Scholar 

  3. Hawkins MJ. IL-2/LAK: Current status and possible future directions. In: Principles and Practice of Oncology: Updates 1989; 3(8): 1–14.

    Google Scholar 

  4. Parkinson DR. Interleukin-2 in cancer therapy. Sem in Oncol 1988; 15 (6 suppl): 10–26.

    Google Scholar 

  5. Smith KA. Interleukin-2: inception, impact, and implications. Science 1988; 240: 1169–76.

    Google Scholar 

  6. Herberman RB. Interleukin-2 therapy of human cancer: potential benefits versus toxicity. J Clin Oncol 1989; 7: 1–4.

    Google Scholar 

  7. Hamaoka T, Fujiwara H. Phenotypically and functionally distinct T-cell subsets of antitumor responses. Immunology Today 1987; 8: 267–9.

    Google Scholar 

  8. Lanier, L, Phillips J. Evidence for three types of human cytotoxic lymphocytes. Immunology Today 1986; 7 132–4.

    Google Scholar 

  9. Anichini A, Fossati G, Parmianio G. Clonal analysis of the cytolytic T-cell response to human tumors. Immunology Today 1987; 8: 385–9.

    Google Scholar 

  10. Hersey P, Bolhuis R. ‘Nonspecific’ MHC-restricted killer cells and their receptors. Immunology Today 1987; 8: 233–9.

    Google Scholar 

  11. Marrack P, Kappler J. The T-cell receptor. Science 1987; 238: 1073–8.

    Google Scholar 

  12. Voss SD, Hank JA, Nobis CA, Fisch P, Sosman JA, Sondel PM. Serum levels of the low-affinity interleukin 2 receptor molecule (TAC) during IL-2 therapy reflect systemic lymphoid mass activation. Cancer Immunol Immunother 1989; 29: 261–9.

    Google Scholar 

  13. Greene WC, Depper JM, Kronke M, Leonard WJ. The human interleukin-2 receptor: analysis of structure and function. Immunological Rev 1986; 92: 29–48.

    Google Scholar 

  14. Smith KA. The interleukin-2 receptor. Ann Rev Cell Biol 1989; 5: 397–425.

    Google Scholar 

  15. Voss SD, Robb RJ, Weil-Hillman G, Hank JA, Sugamura K, Tsudo M, Sondel PM. Increased expression of the IL-2 receptor β chain (p70) on CD56+ NK cells followingin vivo IL-2 therapy: p70 expression does not alone predict the level of intermediate-affinity IL-2 binding. J Exp Med 1990; 172: 1101–14.

    Google Scholar 

  16. Waldmann TR. The multi-subunit interleukin-2 receptor. Ann Rev Biochem 1989; 58: 875–911.

    Google Scholar 

  17. Cantrell DA, Smith KA. Transient expression of interleukin-2 receptors. Consequences for T-cell growth. J Exp Med 1983; 158: 1895–911.

    Google Scholar 

  18. Segal DM, Wunderlich JR. Targeting of cytotoxic cells with heterocross-linked antibodies. Cancer Invest 1988; 6: 83–92.

    Google Scholar 

  19. Tsudo M, Goldman CK, Bongiovani KF, Chan WC, Winton EF, Yagita M, Grimm EA, Waldmann TA. The p75 peptide is the receptor for interleukin-2 expressed on large granular lymphocytes and is responsible for the interleukin-2 activation of these cells. Proc Natl Acad Sci USA 1987; 84: 5394–8.

    Google Scholar 

  20. Grimm EA, Mazumber A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin-2 activated autologous human peripheral blood lymphocytes. J Exp Med 1982; 155: 1823–41.

    Google Scholar 

  21. Grimm EA, Robb RJ, Roth JA, Neckers LM, Lachman LB, Wilson DJ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. III. Evidence that IL-2 is sufficient for direct activation of peripheral blood lymphocytes into lymphokine-activated killer cells. J Exp Med 1983; 158: 1356–61.

    Google Scholar 

  22. Lotze MT, Grimm EA, Mazumber A, Strausser JL, Rosenberg SA. In vitro growth of cytotoxic human lymphocytes. IV Lysis of fresh and cultured autologous tumor by lymphocytes cultured in T cell growth factor (TCGF). Cancer Res 1981; 41: 4420–5.

    Google Scholar 

  23. Rosenstein M, Yron I, Kaufman Y, Rosenberg SA. Lymphokine activated killer cells: lysis of fresh syngeneic NKJ-resistant murine tumor cells by lymphocytes cultured in interleukin-2. Cancer Res 1984; 44: 1946–53.

    Google Scholar 

  24. Phillips JH, Lanier LL. Dissection of the lymphokine activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med 1986; 164: 814–25.

    Google Scholar 

  25. Ortaldo JR, Mason A, Overton R. Lymphokine-activated killer cells. Analysis of progenitors and effectors. J Exp Med 1986; 164; 1193–205.

    Google Scholar 

  26. Reynolds CW, Ortaldo JR. Natural killer activity: the definition of a function rather than a cell type. Immunology Today 1987; 8: 172–4.

    Google Scholar 

  27. Sondel PM, Hank JH, Kohler PC, Chen BP, Minkoff DZ, Molenda JA. Destruction of autologous human lymphocytes by interleukin-2 activated cytotoxic cells. J Immunol 1986; 137: 502–11.

    Google Scholar 

  28. Albertini MR, Oettel KR, Weil-Hillman G, Lindstrom MJ, Schell K, Hank JA, Sondel PM. Limiting dilution analysis of lymphokine-activated killer cell precursor frequencies in peripheral blood lymphocytes of cancer patients receiving IL-2 therapy. J Biol Resp Modifiers 1990; 9: 456–62.

    Google Scholar 

  29. Itoh K. Platsoucas C, Balch C. Autologous tumor specific cytotoxic T-lymphocytes in the infiltrate of human metastatic melanoma. J Exp Med 1988; 168: 1419–41.

    Google Scholar 

  30. Itch K, Tilden A, Balch C. Interleukin-2 activation of cytotoxic T-lymphocytes infiltrating into human metastatic melanomas. Cancer Res 1986; 46: 3011–7.

    Google Scholar 

  31. Mukherji B, Guha A, Chakraborty N, Sivanandham M, Nashed A, Sporn J, Ergin M. Clonal analysis of cytotoxic and regulatory T-cell responses against human melanoma. J Exp Med 1989; 169: 1961–79.

    Google Scholar 

  32. Knuth A, Wolfel T, Klehmann E, Boon T, Buschenfelde K. Cytolytic T-cell clones against an autologous melanoma: Specificity study and definition of three antigens by immunoselection. Proc Natl Acad Sci USA 1989; 86: 2804–8.

    Google Scholar 

  33. Eynde VC, Hainaut P, Herin M, Knuth A, Lemoine C, Weynants P, Bruggen PVD, Fauchet R, Boon T. Presence on a human melanoma of multiple antigens recognized by autologous CTL. Int J Cancer 1989; 44: 634–40.

    Google Scholar 

  34. Albertini MR, Nicklas JA, Chastenay BF, Hunter TC, Albertini RJ, Clark SS, Hank JA, Sondel PM. Analysis of T-cell receptorβ andγ genes from peripheral blood, regional lymph node and tumor infiltrating lymphocyte clones from melanoma patients. Cancer Immunol Immunother 1991; 32: 325–30.

    Google Scholar 

  35. Belldegrum A, Muul LM, Rosenberg SA. Interleukin-2 expanded tumor infiltrating lymphocytes in human renal cell cancer: isolation, characterization, and antitumor activity. Cancer Res 1988; 48: 206–14.

    Google Scholar 

  36. Parmiani G, Anichini A, Fossati G. Cellular immune response against autologous human malignant melanoma: arein vitro studies providing a framework for a more effective immunotherapy? J Natl Cancer Inst 1990; 82: 361–70.

    Google Scholar 

  37. Chang AE, Hyatt CL, Rosenberg SA. Systemic administration of recombinant human interleukin-2 in mice. J Biol Resp Modifiers 1984; 3: 561–72.

    Google Scholar 

  38. Rosenberg SA.In vitro administration of purified Jurkat-derived interleukin-2 in mice. Cancer Res 1984; 44: 1380–6.

    Google Scholar 

  39. Eisenthal A, Shiloni E, Rosenberg SA. Characterization of IL-2 induced murine cells which exhibit ADCC activity. Cell Immunol 1988; 115: 257–72.

    Google Scholar 

  40. Ettinghausen SE, Rosenberg SA. Immunotherapy of murine sarcomas using lymphokine activated killer cells: optimization of the schedule and route of administration of recombinant interleukin-2. Cancer Res 1986; 46: 2784–92.

    Google Scholar 

  41. Hewitt HB. The choice of animal tumors for experimental studies of cancer therapy. Adv Cancer Res 1978; 27: 149–200.

    Google Scholar 

  42. Kawase I, Komuta K, Hara H, Inoue T, Hosoe S, Ikeda T, Shirasaka T, Yokota S, Tanio Y, Masuno T, Kishimoto S. Combined therapy of mice bearing a lymphokine-activated killer-resistant tumor with recombinant interleukin-2 and an antitumor monoclonal antibody capable of inducing antibody-dependent cellular cytotoxicity. Cancer Res 1988; 48: 1173–9.

    Google Scholar 

  43. Mulé JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin 2. Science 1984; 225: 1487–9.

    Google Scholar 

  44. Mulé JJ, Yang J, Shu S, Rosenberg SA. The antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2in vivo: direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells. J Immunol 1986; 136: 3899–909.

    Google Scholar 

  45. Mulé JJ, Rosenberg SA. Immunotherapy with lymphokine combinations. In: DeVita VT, Hellman S, Rosenberg SA, eds. Important advances in oncology. JB Lippincott, Philadelphia, 1989: 99–126.

    Google Scholar 

  46. Papa MZ, Yang JC, Vetto JT, Shiloni E, Eisenthal A, Rosenberg SA. Combined effects on chemotherapy and interleukin-2 in the therapy of mice with advanced pulmonary tumors. Cancer Res 1988; 48: 122–9.

    Google Scholar 

  47. Rosenberg SA, Lotze MT, Mulé JJ. New approaches to the immunotherapy of cancer using interleukin-2. Annals Inter Med 1988; 108: 853–64.

    Google Scholar 

  48. Mulé JJ, Shu S, Rosenberg SA. The antitumor efficacy of lymphokine activated killer cells and recombinant IL-2in vivo. J Immunol 1985; 135: 646–52.

    Google Scholar 

  49. Rosenberg SA, Mulé JJ, Spiess PJ, Reichert CM, Schwarz SL. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high dose recombinant IL-2. J Exp Med 1985; 161: 1169–88.

    Google Scholar 

  50. Lafreniere R, Rosenberg SA. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin-2. Cancer Res 1985; 45: 3735–44.

    Google Scholar 

  51. Cheever MA, Thompson JA, Kern DE, Greenberg PD. Interleukin-2 (IL-2) administeredin vivo: influence of IL-2 route and timing on T cell growth. J Immunol 1985; 134: 3895–9.

    Google Scholar 

  52. Donohue JH, Rosenberg SA. The fate of interleukin-2 afterin vivo administration. Cancer Res 1983; 130: 2203–8.

    Google Scholar 

  53. Thompson JA, Peace DJ, Klarnet JP, Kern DE, Greenberg PD, Cheever MA. Eradication of disseminated murine leukemia by treatment with high dose interleukin-2. J Immunol 1986; 137: 3675–80.

    Google Scholar 

  54. Hank JA, Kohler PC, Hillman GH, Rosenthal NS, Moore KH, Storer B, Minkoff DZ, Bradshaw J, Bechhofer R, Sondel PM. Interleukin-2 (IL-2) dependent human lymphokine activated killer (LAK) cells generatedin vivo during administration of human recombinant IL-2. Cancer Res 1988; 48: 1965–71.

    Google Scholar 

  55. Rosenthal NS, Hank JA, Kohler PC, Minkoff DZ, Moore KH, Bechhofer R, Hong R, Storer B, Sondel PM. Thein vitro function of lymphocytes from 25 cancer patients receiving four to seven consecutive days of recombinant IL-2. J Biol Resp Modifiers 1988; 7: 123–39.

    Google Scholar 

  56. Sondel PM, Kohler PC, Hank JA, Moore KH, Rosenthal NS, Sosman JA, Bechhofer R, Storer B. Clinical and immunologic effects of recombinant interleukin-2 given by repetitive weekly cycles of patients with cancer. Cancer Res 1988; 48: 2561–7.

    Google Scholar 

  57. Sondel PM. Cellular immunotherapy of cancer: preclinical and clinical testing utilizing interleukin-2. In: Lotzova E, Herberman R, eds. IL-2 activated killer cells and cancer treatment. Boca Raton, FL: CRC Press, 1989: 1–24.

    Google Scholar 

  58. Sosman JA, Kohler PC, Hank JA, Moore KH, Bechhofer R, Storer B, Sondel PM. Repetitive weekly cycles of recombinant human interleukin-2: respones of renal carcinoma with acceptable toxicity. J Natl Cancer Inst 1988; 80: 60–3.

    Google Scholar 

  59. Sosman JA, Kohler PC, Hank JA, Moore KH, Bechhofer R, Storer B, Sondel PM. Repetitive weekly cycles of interleukin-2. II. Clinical and immunologic effects of dose, schedule, and addition of indomethacin. J Natl Cancer Inst 1988; 80: 1451–61.

    Google Scholar 

  60. Sosman JA, Hank JA, Moore KH, Borchert A, Schell K, Kohler P, Goldstein D, Bechhofer R, Storer B, Albertini M, Leung P, Levitt D, Sondel PM. Prolonged interleukin-2 (IL-2) treatment can augment immune activation without enhancing antitumor activity in renal cell carcinoma. Cancer Invest 1991; 9: 35–48.

    Google Scholar 

  61. Weil-Hillman G, Fisch P, Prieve AF, Sosman JA, Hank JA, Sondel PM. Lymphokine activated killer activity induced byin vivo interleukin-2 therapy: Predominant role for lymphocytes with increased expression of CD2 and Leu19 antigens but negative expression of CD16 antigens. Cancer Res 1989; 49; 3680–8.

    Google Scholar 

  62. Weil-Hillman G, Voss SD, Fisch P, Schell K, Hank JA, Sosman JA, Sugamura K, Sondel PM.In vivo interleukin-2 induced lymphokine activated killer activity is mediated by Leu19+ cells which maintain the Tac negative phenotype. Cancer Res 1990; 50: 2683–90.

    Google Scholar 

  63. West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB, Oldham RK. Constant infusion recombinant interleukin-2 in adoptive immunotherapy of cancer. N Engl J Med 1987; 316: 898–905.

    Google Scholar 

  64. Atkins MB, Gould JA, Allegretta M, Li JJ, Dempsey RA, Rudders RA, Parkinson DR, Reichlin S, Mier JW. Phase I evaluation of recombinant interleukin-2 in patients with advanced malignant disease. J Clin Oncol 1986; 4: 1380–91.

    Google Scholar 

  65. Hank JA, Sosman JA, Kohler PC, Bechhofer R, Storer B, Sondel PM. Depressedin vitro T cell responses concomitant with augmented interleukin-2 responses by lymphocytes from cancer patients followingin vivo treatment with interleukin-2. J Biol Resp Modifiers 1990; 9: 5–14.

    Google Scholar 

  66. Weibke EA, Rosenberg SA, Lotze MT. Acute immunologic effects of interleukin-2 therapy on cancer patients: decreased delayed type hypersensitivity response and decreased proliferative response to soluble antigens. J Clin Oncol 1988; 6: 1440–9.

    Google Scholar 

  67. Konrad MW, Hemstreet G, Hersh EM, Mansell PWA, Mertelsmann R, Kolitz JE, Bradley EC. Pharmacokinetics of recombinant interleukin-2 in humans. Cancer Res 1990; 50: 2009–17.

    Google Scholar 

  68. Borden EC, Sondel PM. Lymphokines and cytokines as cancer treatment. Immunotherapy realized. Cancer 1990; 65: 800–14.

    Google Scholar 

  69. Hank JA, Weil-Hillman G, Surfus JE, Sosman JA, Sondel PM. Addition of interleukin-2in vitro augments detection of lymphokine activated killer activity generatedin vivo. Cancer Immunol Immunoth 1990; 31: 53–9.

    Google Scholar 

  70. Hank JA, Robinson RR, Surfus J, Mueller BM, Reisfeld RA, Cheung N-K, Sondel PM. Augmentation of antibody dependent cell mediated cytotoxicity followingin vivo therapy with recombinant interleukin-2. Cancer Res 1990; 50: 5234–9.

    Google Scholar 

  71. Sosman JA, Hank JA, Sondel PM.In vivo activation of lymphokine-activated killer activity with interleukin-2: prospects for combination therapies. Sem in Oncol 1990; 17: 22–30.

    Google Scholar 

  72. Rosenberg SA. Adoptive immunotherapy of cancer using lymphokine activated killer cells and recombinant interleukin-2. In: Devita VT, Hellman S, Rosenberg SA, eds. Important advances in oncology 1986. Lippencott, Philadelphlia, 1986: 55–91.

    Google Scholar 

  73. Lotze MT, Matory YL, Ettinghausen SE, Rayner AA, Sharrow SO, Seipp CA, Custer MC, Rosenberg SA.In vivo administration of purified human interleukin-2. II. Half-life, immunological effects, and expansion of peripheral lymphoid cellsin vivo with recombinant IL-2. J Immunol 1985; 135: 2865–75.

    Google Scholar 

  74. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, Seipp CA, Simpson C, White DE. A progress report on the treatment of 157 patients with advanced cancer using lymphokine activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med 1987; 316: 889–97.

    Google Scholar 

  75. Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, White DE. Experience with the use of high dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 1989; 210: 474–85.

    Google Scholar 

  76. Bukowski RM, Goodman P, Crawford ED, Sergi JS, Redman BG, Whitehead RP. Phase II trial of high dose intermittent interleukin-2 in metastatic renal cell car cinoma: a southwest oncology group study. J Natl Cancer Inst 1990; 82: 143–6.

    Google Scholar 

  77. Margolin KA, Rayner AA, Hawkins MJ, Atkins MB, Dutcher JP, Fisher RI, Weiss GR, Doroshow JH, Jaffe HS, Roper M, Parkinson DR, Wiernik PH, Creekmore SP, Boldt DH. Interleukin-2 and lymphokine activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol 1989; 7: 486–98.

    Google Scholar 

  78. Creekmore SP, Harris JE, Ellis TM, Braun DP, Cohen II, Bhoopalam N, Jassak PF, Cahill MA, Canzoneri CL, Fisher RI. A phase I clinical trial of recombinant interleukin-2 by periodic 24 hours intravenous infusions. J Clin Oncol 1989; 7: 276–84.

    Google Scholar 

  79. Eberlein TJ, Schoof DD, Jung S, Davidson D, Gramolini B, McGrath K, Massaro A, Wilson RE. A new regimen of interleukin-2 and lymphokine activated killer cells: Efficacy without significant toxicity. Arch Int Med 1988; 148: 2571–6.

    Google Scholar 

  80. Allison MAK, Jones SE, McGuffey P. Phase II trial of outpatient interleukin-2 in malignant lymphoma, chronic lymphocytic leukemia and selected solid tumors. J Clin Oncol 1989; 7: 75–80.

    Google Scholar 

  81. Kohler PC, Hank JA, Moore KH, Storer B, Bechhofer R, Hong R, Sondel PM. Phase I clinical trial of recombinant interleukin-2: a comparison of bolus and continuous intravenous infusion. Cancer Invest 1989; 7: 213–23.

    Google Scholar 

  82. Thompson JA, Lee DJ, Lindgren CG, Benz LA, Collins C, Levitt D, Fefer A. Influence of dose and duration of infusion of interleukin-2 on toxicity and immunomodulation. J Clin Oncol 1988; 669-78.

  83. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT, Seipp CA, Simpson C, Riechert CM. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485–92.

    Google Scholar 

  84. Dutcher JP, Creekmore SP, Weiss GR, Margolin KA, Markowitz AB, Roper M, Parkinson DR, Ciobanu N, Fisher RI, Boldt DH, Doroshow JH, Rayner AA, Hawkins M, Atkins M. A phase II study of interleukin-2 and lymphokine-activated killer cells in patients with metastatic malignant melanoma. J Clin Oncol 1989; 7: 477–85.

    Google Scholar 

  85. Albertini MA, Sosman JA, Hank JA, Moore KH, Borchert A, Schell K, Kohler PC, Bechhofer R, Storer B, Sondel PM. The influence of autologous lymphokine activated killer cell infusions on the toxicity and antitumor effect of repetitive cycles of interleukin-2. Cancer 1990; 66: 2457–64.

    Google Scholar 

  86. Fliedner V, Qiao L, Whiteside T, Leyvraz S, Barras C, Miescher S. Clonogenic and functional potential of T-lymphocytes infiltrating human solid tumors. In: Truitt R, Gale R, Bortin M, eds. Cellular immunotherapy of cancer. New York, NY: Alan R Liss, Inc., 1987: 223–32.

    Google Scholar 

  87. Rosenberg SA, Spiess PJ, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor infiltrating lymphocytes. Science 1986; 1318-21.

  88. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, Yanh JC, Yolles P, Larson SM, Rosenberg SA. Tumor localization of adoptively transferred Indium-III labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 1989; 7: 250–61.

    Google Scholar 

  89. Kradin RL, Lazarus DS, Dubinett SM, Gifford J, Grove B, Kurnick JT, Preffer FI, Pinto CE, Davidson E, Callahan RJ, Strauss HW. Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet 1989; 1: 577–80.

    Google Scholar 

  90. Rosenberg SA, Packard B, Aebersold P, Solomon D, Topalian S, Toy S, Simon P, Lotze M, Yang J, Seipp C, Simpson C, Carter C, Bock S, Schwartzentruber D, Wei J, White D. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med 1988; 319: 1676–80.

    Google Scholar 

  91. Topalian SL, Solomon D, Avis FP, Chang AE, Freerksen DL, Linehan WM, Lotze MT, Robertson CN, Seipp CA, Simon P, Simpson CG, Rosenberg SA. Immunotherapy of patients with advanced cancer using tumor infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol 1988; 6: 839–53.

    Google Scholar 

  92. Sondel PM, Sosman JA, Hank JA, Kohler PC, Storer B. Tumor infiltrating lymphocytes and interleukin-2 in melanoma (letter). N Engl J Med 1989; 320: 1418–9.

    Google Scholar 

  93. Nitta T, Oksenberg JR, Rao NA, Steinman L. Predominant expression of T cell receptor Vα7 in tumor infiltrating lymphocytes of ureal melanoma. Science 1990; 249: 672–4.

    Google Scholar 

  94. Mitchell MS, Kempf RA, Harel W, Shau H, Boswell WD, Lind S, Bradley EC. Effectiveness and tolerability of low dose cyclophosphamide and low dose intravenous interleukin-2 in disseminated melanoma. J Clin Oncol 1988; 6: 409–24.

    Google Scholar 

  95. Flaherty LE, Redman BG, Chabot GG, Martino S, Gualdoni SM, Heilbrun LK, Valdivieso M, Bradley EC. A phase I–II study of dacarbazine in combination with outpatient interleukin-2 in metastatic malignant melanoma. Cancer 1990; 65: 2471–7.

    Google Scholar 

  96. Paciucci PA, Holland JF, Ryder JS, Konefal RG, Bekesi GJ, Odchimar R, Gordon R. Immunotherapy with interleukin-2 by constant infusion with and without adoptive cell transfer and with weekly doxorubicin. Cancer Treat Rev 1989; 16 (suppl A): 67–81.

    Google Scholar 

  97. Lee KH, Talpaz M, Rothberg JM, Murray JL, Papadopoulos N, Plager C, Benjamin R, Levitt D, Gutterman J. Concomitant administration of recombinant human interleukin-2 and recombinant interferon α-2A in cancer patients: a phase I study. J Clin Oncol 1989; 7: 1726–32.

    Google Scholar 

  98. Krigel RL, Padavid-Schaller KA, Rudolph AR, Konrad M, Bradley EC, Comis RL. Renal cell carcinoma: treatment with recombinant interleukin-2 plus β interferon. J Clin Oncol 1990; 8: 460–7.

    Google Scholar 

  99. Foon KA. Biological response modifiers: the new immunotherapy. Cancer Res 1989; 49: 1621–39.

    Google Scholar 

  100. Schlom J. Basic principles and applications of monoclonal antibodies in the management of carcinomas: the Richard and Hinda Rosenthal Foundation award lecture. Cancer Res 1986; 46: 3225–38.

    Google Scholar 

  101. Ellenhorn JD, Hirsh R, Schreiber H, Bluestone JA.In vivo administration of anti-CD3 prevents malignant progressor tumor growth. Science 1988; 242: 569–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albertini, M.R., Hank, J.A. & Sondel, P.M. Strategies for improving antitumor activity utilizing IL-2: Preclinical models and analysis of antitumor activity of lymphocytes from patients receiving IL-2. Biotherapy 4, 189–198 (1992). https://doi.org/10.1007/BF02174205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02174205

Key words

Navigation