Skip to main content
Log in

The centroid method of numerical integration

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The midpoint method of integration of a function of one variable is perhaps the simplest method of numerical integration, although it is often not mentioned in textbooks. It is here generalized to any number of dimensions and the generalization is called thecentroid method. This again is a very simple method and it can be conveniently used, for example, for the integration of a function of several variables over any non-pathological region. The numerical examples include the integration of multinormal integrands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckingham, R. A.: Numerical methods. London: Pitman 1957.

    Google Scholar 

  2. Chrystal, George: A textbook of algebra, v. 2. New York: Dover 1964.

    Google Scholar 

  3. Craig, C. C.: Note on the use of fixed numbers of defectives and variable sample sizes in sampling by attributes. Industrial Quality Control9, 43–45 (1953). (Mentioned in [14].)

    Google Scholar 

  4. Henrici, P.: Elements of numerical analysis. New York: Wiley 1967

    Google Scholar 

  5. —— Discrete variable methods in ordinary differential equations. New York: Wiley 1962.

    Google Scholar 

  6. Hildebrand, F. B.: Introduction to numerical analysis. New York: McGraw-Hill 1953

    Google Scholar 

  7. Hobson, E. W.: The theory of spherical and ellipsoidal harmonics. New York: Chelsea 1931/1955.

    Google Scholar 

  8. Householder, A. S.: Principles of numerical analysis. New York: McGraw-Hill 1953.

    Google Scholar 

  9. Kopal, Z.: Numerical analysis. New York: Wiley 1955/1961.

    Google Scholar 

  10. Milne, W. E.: Numerical calculus. Princeton: Princeton University Press 1949

    Google Scholar 

  11. Milne-Thomson, L. M.: The calculus of finite differences. London: Macmillan 1933/1960.

    Google Scholar 

  12. National Bureau of Standards: Tables of the Bivariate normal distribution function and related functions. Washington, D. C.: U.S. Government Printing Office 1959.

    Google Scholar 

  13. Owen, D. B.: Handbook of statistical tables. Pergamon Press, and Addison Wesley, 1962, p. 264.

    Google Scholar 

  14. Patil, G. P.: On the evaluation of the negative binomial distribution with examples. Technometrics2, 501–505 (1960).

    Google Scholar 

  15. Pearson, K.: On the applications of the double Bessel Function\(K_{\tau _1 \tau _2 } (x)\) to statistical problems. Biometrika25, 158–178 (1933). esp. pp. 160–161 containing some work of E. C. Fieller.

    Google Scholar 

  16. Redish, K. A.: An introduction to computational methods. New York: Wiley 1961.

    Google Scholar 

  17. Salvadori, M. G.: Numerical methods in engineering. New York: Prentice-Hall 1952.

    Google Scholar 

  18. Steffensen, J. F.: Interpolation. New York: Chelsea Publishing Co. 1950.

    Google Scholar 

  19. Whittaker, E. T., Watson, G. N.: A course in modern analysis. Cambridge: University Press 1935, 4th edition.

    Google Scholar 

  20. Wise, M. E.: The incomplete Beta function as a contour integral and a quickly converging series for its inverse. Biometrika37, 208–218 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goo, I.J., Gaskins, A. The centroid method of numerical integration. Numer. Math. 16, 343–359 (1971). https://doi.org/10.1007/BF02165005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02165005

Keywords

Navigation