Skip to main content
Log in

Die Stabilitätenreihenfolge der stereoisomeren Hydrindan-und Hydrindanon-Verbindungen

  • Published:
Experientia Aims and scope Submit manuscript

Summary

The stability orders for severalcis/trans epimeric hydrindanones and 8-methyl-hydrindanones are shown in a qualitative manner. Starting with the geometry of cyclopentane and cyclohexane changes of Bayer and Pitzer strain existing in the two isomeric bicyclo (4:3:0) nonane systems are discussed. The influences of an angular methyl group (estimated by the simple empirical method evaluated byTurner) and of two new conformational effects (alkyl ketone effects) induced by replacing a methylene group by a carbonyl group are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. R. Barton undR. C. Cookson, Quart. Rev.10, 44 (1956); dort weitere Literaturangaben.

    Article  CAS  Google Scholar 

  2. W. G. Dauben undK. S. Pitzer inSteric Effects in Organic Chemistry (M. S. Newman, John Wiley & Sons, New York 1956).

    Google Scholar 

  3. W. Klyne,Progress in Stereochemistry (Butterworth, London 1954).

    Google Scholar 

  4. J. C. Mc Coubrey undA. R. Ubbelohde, Quart. Rev.5, 36 (1951).

    Google Scholar 

  5. E. A. Braude undF. C. Nachod,Determination of Organic Structures by Physical Methods (Academic Press, New York 1955).

    Google Scholar 

  6. J. C. Mc Coubrey undA. R. Ubbelohde, Quart. Rev.5, 36 (1951).

    Google Scholar 

  7. S. Mizushima,Internal Rotations and the Structure of Molecules (Academic Press, New York 1954).

    Google Scholar 

  8. Einer Absprache zwischenH. C. Brown undV. Prelog [J. Amer. chem. Soc.73, 215 (1951)] gemäss bezeichnet man die 5-, 6- und 7 gliedrigen Ringsysteme als gewöhnliche Ringe. Unter der bei diesen zyklischen Verbindungen auftretenden Spannung versteht man einmal die Abweichung der an der Ringbildung beteiligten Valenzwinkel vom jeweiligen energetisch begünstigten Wert: Baeyer-Spannung; die Valenzwinkel der sp3-hybridisierten C-Atome sind bei 109° 28′ spannungsfrei, diejenigen der sp2-hybridisierten C-Atome bei einem Wert von 120°. Als zweite Ursache einer Ringspannung gilt das Auftreten repulsiver Kräfte, die von Atomen oder Atomgruppen ausgehen, die nicht unmittelbar miteinander verbunden sind, sondern sich an benachbarten und übernächsten usw, C-Atomen befinden: Pitzer-Spannung.

    Google Scholar 

  9. K. S. Pitzer, Chem. Reviews27, 39 (1940).

    Article  CAS  Google Scholar 

  10. R. B. Turner, J. Amer. chem. Soc.74, 2118 (1952).

    Article  CAS  Google Scholar 

  11. W. S. Johnson, Exper.8, 315 (1951); J. Amer. chem. Soc.75, 1498 (1953); Chem. and Ind.1956, 167.

    Google Scholar 

  12. J. G. Aston, S. C. Schumann, H. L. Fink undP. M. Doty, J. Amer. chem. Soc.63, 2029 (1941).

    Article  CAS  Google Scholar 

  13. J. G. Aston, H. L. Fink undS. C. Schumann, J. Amer. chem. Soc.65, 341 (1943).

    Article  CAS  Google Scholar 

  14. K. S. Pitzer, Science101, 672 (1945).

    Article  CAS  Google Scholar 

  15. D. H. R. Barton, Exper.6, 316 (1950).

    CAS  Google Scholar 

  16. J. N. Haresnape, Chem. and Ind.1953, 1091.

  17. W. Hückel, M. Sachs, J. Yantschulewitsch undF. Nerdel, Ann.518, 155 (1935).

    Google Scholar 

  18. W. Hückel, M. Sachs, Y. Yantschulewitsch undF. Nerdel, Ann.518, 155 (1935).

    Google Scholar 

  19. W. G. Dauben undK. S. Pitzer inSteric Effects in Organic Chemistry (M. S. Newman, John Wiley & Sons, New York 1956).

    Google Scholar 

  20. S. G. Angyal undC. G. MacDonald, J. chem. Soc.1952, 686.

  21. S. G. Angyal undC. G. Mac Donald, J. chem. Soc.1952, 686.

  22. R. P. Linstead, Ann. Reports32, 306 (1935).

    Google Scholar 

  23. H. G. Drex, Rec. trav. chim. Pays-Bas41, 318 (1922).

    Google Scholar 

  24. W. Hückel undH. Friedrich, Lieb. Ann.451, 132 (1926).

    Article  Google Scholar 

  25. L. P. Kuhn, J. Amer. chem. Soc.74, 2492 (1952).

    Article  CAS  Google Scholar 

  26. A. S. Dreiding, Chem. and Ind.1954, 992.

  27. E. L. Eliel undC. Pillar, J. Amer. chem. Soc.77, 3600 (1955).

    Article  CAS  Google Scholar 

  28. A. S. Dreiding, Chem. and Ind.1954, 992.

  29. L. P. Kuhn, J. Amer. chem. Soc.74, 2492 (1952).

    Article  CAS  Google Scholar 

  30. E. L. Eliel undC. Pillar, J. Amer. chem. Soc.77, 3600 (1955).

    Article  CAS  Google Scholar 

  31. E. J. Corey undR. A. Sneen, J. Amer. chem. Soc.77, 2505 (1955).

    Article  CAS  Google Scholar 

  32. R. C. Cookson, J. chem. Soc.1954, 282.

  33. H. C. Brown, J. H. Brewster undH. Shechter, J. Amer. chem. Soc.76, 467 (1954).

    Article  CAS  Google Scholar 

  34. P. A. Robins undJ. Walker, J. chem. Soc.1954, 3960;1955, 1789; Chem. and Ind.1955, 722.

  35. W. Klyne, Exper.12, 119 (1956).

    Google Scholar 

  36. P. A. Robins undJ. Walker, J. chem. Soc.1954, 3690;1955, 1789; Chem. and Ind.1955, 772.

  37. W. Klyne, Exper.12, 119 (1956).

    Google Scholar 

  38. W. G. Dauben undJ. Jiu, J. Amer. chem. Soc.76, 4426 (1954).

    Article  CAS  Google Scholar 

  39. P. K. Banerjee undP. R. Shafer, J. Amer. chem. Soc.72, 1931 (1950).

    Article  CAS  Google Scholar 

  40. H. H. Inhoffen undE. Prinz, Chem. Ber.87, 684 (1954).

    Article  CAS  Google Scholar 

  41. A. Windaus undW. Grundmann, Lieb. Ann.524, 295 (1936).

    Article  CAS  Google Scholar 

  42. K. Dimroth undH. Jonsson, Chem. Ber.74, 520 (1941).

    Article  Google Scholar 

  43. W. Hückel undL. Schnitzspahn, Lieb. Ann.505, 274 (1933).

    Article  Google Scholar 

  44. W. Hückel undE. Goth, Chem. Ber.67, 2104 (1934).

    Article  Google Scholar 

  45. W. Hückel undR. Schlüter, Chem. Ber.67, 2107 (1934).

    Article  Google Scholar 

  46. K. Dimroth undH. Johnsson, Chem. Ber.74, 520 (1941).

    Article  Google Scholar 

  47. D. Crowfoot undJ. D. Dunitz, Nature162, 608 (1948).

    Article  CAS  Google Scholar 

  48. C. S. Barnes, D. H. R. Barton undG. F. Laws, Chem. and Ind.1953, 616;D. H. R. Barton undG. F. Laws, J. chem. Soc.1954, 52.

  49. L. F. Fieser undM. Fieser,Natural Products Related to Phenanthren 3 Aulf. (Reinhold, New York 1949), S. 622.

    Google Scholar 

  50. A. Windaus, Lieb. Ann.447, 233 (1926).

    Article  CAS  Google Scholar 

  51. F. Sorm, Coll. Czechoslov. chem. Commun.12, 437 (1947).

    Google Scholar 

  52. F. Sorm undH. Dykova, Coll. Czechoslov. chem. Commun.13, 407 (1948).

    Article  CAS  Google Scholar 

  53. L. F. Fieser, J. Amer. chem. Soc.75, 4386 (1953).

    Article  CAS  Google Scholar 

  54. W. G. Dauben undC. F. Fonken, J. Amer. chem. Soc.78, 4736 (1956).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinkert, G. Die Stabilitätenreihenfolge der stereoisomeren Hydrindan-und Hydrindanon-Verbindungen. Experientia 13, 381–389 (1957). https://doi.org/10.1007/BF02161107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02161107

Navigation