Skip to main content
Log in

Biogenetic relationships between coumarins, flavonoids, isoflavonoids, and rotenoids

  • Übersichtsreferate
  • Published:
Experientia Aims and scope Submit manuscript

Zusammenfassung

Einleitend wird auf die bisherigen Ergebnisse über die Biogenese der Flavonoide, der Zimtsäurederivate und der Cumarine eingegangen. Für die Herkunft der C9-Einheit in diesen Verbindungen ergeben sich enge biogenetische Zusammenhänge. Die unter Phenylwanderung verlaufende Biogenese der Isoflavone wird eingehend diskutiert. Die Bildung der Isoflavone und der Flavonoide verläuft sehr wahrscheinlich über eng verwandte Vorstufen. Es wird dann ausführlich auf die strukturellen Beziehungen zwischen Isoflavonen und Rotenoiden eingegangen und ein Biosyntheseweg für die Rotenoide vorgeschlagen, welcher zu der richtigen Oxydationsstufe des Heterocyclus führt. Als zentrale Zwischenstufe für die Biogenese der Flavonoide, der Isoflavone und der Rotenoide kann ein Chalkon angesehen werden. Abschliessend werden die biogenetischen Beziehungen zu den 4-Arylchromanen behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. J. Birch, Fortschr. Chem. org. Naturst.14, 186 (1957).

    CAS  Google Scholar 

  2. A. J. Birch, inA. R. Todd,Perspectives in Organic Chemistry (Interscience Publishers Inc., New York 1956), p. 134.

    Google Scholar 

  3. A. J. Birch andH. Smith, Chemical Society. Special Publication (London),No. 12, 1 (1958).

  4. J. B. Hendrickson, inM. Gates,The Biogenesis of Natural Substances (Interscience Publishers Inc., New York 1960).

    Google Scholar 

  5. B. D. Davis, inW. D. McElroy andH. D. Glass,A Symposium on Amino Acid Metabolism (Johns Hopkins Press, Baltimore, Maryland 1955).

    Google Scholar 

  6. E. B. Kalam, B. D. Davis, P. R. Srinivasan, andD. B. Sprinson, J. biol. Chem.223, 907, 913 (1956).

    Article  Google Scholar 

  7. B. D. Davis, Adv. Enzymol.16, 247 (1955).

    CAS  Google Scholar 

  8. J. E. Watkin, S. A. Brown, andA. C. Neish, Chemistry in Canada12, 29 (1960).

    Google Scholar 

  9. A. C. Neish, Ann. Rev. Plant Physiol.11, 55 (1960).

    Article  CAS  Google Scholar 

  10. T. R. Seshadri, Tetrahedron6, 169 (1959).

    Article  CAS  Google Scholar 

  11. K. Venkataraman, Fortschr. Chem. org. Naturst.17, 1 (1959).

    CAS  Google Scholar 

  12. L. Bogorad, Ann. Rev. Plant Physiol.9, 417 (1958).

    Article  CAS  Google Scholar 

  13. T. A. Geissman andE. H. Hinreiner, Bot. Rev.18, 77 (1952).

    Article  CAS  Google Scholar 

  14. E. W. Underhill, J. E. Watkin, andA. C. Neish, Canad. J. Biochem. Physiol.35, 219, 229 (1957).

    Article  CAS  Google Scholar 

  15. J. E. Watkin andA. C. Neish, Canad. J. Biochem. Physiol.38, 559 (1960).

    Article  CAS  Google Scholar 

  16. T. A. Geissman andT. Swain, Chem. & Ind.1957, 984.

  17. S. Shibata andM. Yamazaki, Pharm. Bull.6, 42 (1958).

    Article  CAS  Google Scholar 

  18. H. Grisebach, Z. Naturf.12b, 227, 597 (1957);13b, 335 (1958).

    Article  CAS  Google Scholar 

  19. H. Grisebach andM. Bopp, Z. Naturf.14b, 485 (1959).

    Article  CAS  Google Scholar 

  20. A. Hutchinson, C. D. Taper, andG. H. N. Towers, Canad. J. Biochem. Physiol.37, 901 (1959).

    Article  CAS  Google Scholar 

  21. S. A. Brown andA. C. Neish, Nature175, 688 (1955); Canad. J. Biochem. Physiol.33, 948 (1955).

    Article  CAS  Google Scholar 

  22. S. A. Brown, D. Wright, andA. C. Neish, Canad. J. Biochem. Physiol.37, 25 (1959).

    Article  CAS  Google Scholar 

  23. D. R. McCalla andA.C. Neish, Canad. J. Biochem. Physiol.37, 531 (1959).

    Article  CAS  Google Scholar 

  24. T. R. Seshadri, XIV Int. Congress pure appl. Chem. Zurich, Exper. Suppl.2, 270 (1955).

    Google Scholar 

  25. W. Baker, A. C. M. Finch, W. D. Ollis, andK. W. Robinson, Proc. chem. Soc.1959, 91.

  26. N. Kawano, Chem. & Ind.1959, 852.

  27. W. Baker, W. D. Ollis, andK. W. Robinson, Proc. chem. Soc.1959, 269.

  28. Y. Fukui andN. Kawano, J. Amer. chem. Soc.81, 6331 (1959).

    Article  CAS  Google Scholar 

  29. N. Kawano andM. Yamada, J. Amer. chem. Soc.82, 1505 (1960).

    Article  CAS  Google Scholar 

  30. O. L. Gamborg andA. C. Neish, Canad. J. Biochem. Physiol.37, 1277 (1959).

    Article  CAS  Google Scholar 

  31. T. A. Geissman andJ. B. Harborne, Arch. Biochim. Biophys.55, 447 (1955).

    Article  CAS  Google Scholar 

  32. H. Reznik andR. Urban, Naturwiss.42, 13, 592 (1957).

    Article  Google Scholar 

  33. E. C. Bate-Smith, Chem. & Ind.1954, 1457; Sci. Proc. R. Dublin Soc.27, 165 (1956).

    Google Scholar 

  34. D. R. McCalla andA. C. Neish, Canad. J. Biochem. Physiol.37, 537 (1959).

    Article  CAS  Google Scholar 

  35. T. R. Seshadri, Colloques Internationaux du Centre National de la Recherche Scientifique,1955, 71.

  36. J. J. Corner andJ. B. Harborne, Chem. & Ind.1960, 76.

  37. S. F. Lee andD. Le Tourneu, Phytopathology48, 268 (1958).

    CAS  Google Scholar 

  38. R. K. Ibrahim andG. H. N. Towers, Arch. Biochem. Biophys.87, 125 (1960).

    Article  CAS  Google Scholar 

  39. Added in proof: Powerful support for this biosynthetic process has been provided by a recent study of the biosynthesis of novobiocin (K. Chambers, G. W. Kenner, M. J. Temple Robinson, andB. R. Webster, Proc. Chem. Soc.1960, 291).

  40. T. S. Wheeler, Rec. chem. Progr.18 (3), 133 (1957).

    CAS  Google Scholar 

  41. F. M. Dean, Fortschr. Chem. org. Naturst.9, 225 (1952).

    CAS  Google Scholar 

  42. R. D. Haworth, J. chem. Soc.1942, 448.

  43. N. L. Butler andH. W. Seigelman, Nature183, 1813 (1959).

    Article  CAS  Google Scholar 

  44. C. F. Van Sumere, F. Parmentier, andM. van Pouche, Naturwiss.46, 668 (1959).

    Article  Google Scholar 

  45. J. B. Harborne, Biochem. J.74, 270 (1960).

    Article  CAS  Google Scholar 

  46. W. W. Reid, Chem. & Ind.1958, 1439.

  47. T. Kosuge andE. E. Conn, J. biol. Chem.234, 2133 (1959).

    Article  CAS  Google Scholar 

  48. F. Weygand andH. Wendt, Z. Naturf.14b, 421 (1959).

    Article  CAS  Google Scholar 

  49. S. A. Brown, G. H. N. Towers, andD. Wright, Canad. J. Biochem. Physiol.38, 143 (1960).

    Article  CAS  Google Scholar 

  50. S. Goodwin andB. Witkop, J. Amer. chem. Soc.79, 179 (1957).

    Article  CAS  Google Scholar 

  51. G. L. Schmir, L. A. Cohen, andB. Witkop, J. Amer. chem. Soc.81, 2228 (1959).

    Article  CAS  Google Scholar 

  52. R. B. Woodward andT. Singh, J. Amer. chem. Soc.72, 494 (1950).

    Article  CAS  Google Scholar 

  53. G. W. Kenner, M. A. Murray, andC. M. B. Tylor, Tetrahedron1, 259 (1957).

    Article  CAS  Google Scholar 

  54. K. Freudenberg, Proc. 4th Int. Conf. Biochem., Vienna, Symposium II (Pergamon Press, London 1958).

    Google Scholar 

  55. K. Kratzl andG. Billek, Holzforsch.10, 161 (1956).

    Article  Google Scholar 

  56. S. A. Brown andA. C. Neish, J. Amer. chem. Soc.81, 2419 (1959) and preceding papers.

    Article  CAS  Google Scholar 

  57. W. J. Schubert andF. F. Nord, Adv. Enzymol.18, 349 (1957).

    CAS  Google Scholar 

  58. H. Grisebach andN. Doerr, Naturwiss.17, 514 (1959).

    Article  Google Scholar 

  59. H. Grisebach, Z. Naturf.14b, 802 (1959).

    Article  CAS  Google Scholar 

  60. H. Grisebach andN. Doerr, Z. Naturf.15b, 284 (1960).

    Article  CAS  Google Scholar 

  61. Related reactions include the lead tetracetate oxidation of flavanones to isoflavones46, the dehydration of catechin tetramethyl ether to isoflavenes47, and the rearrangement reactions of chalkone-epoxides48.

  62. G. W. K. Cavill, F. M. Dean, A. McGookin, B. M. Marshall, andA. Robertson, J. chem. Soc.1954, 4573.

  63. W. Baker, J. chem. Soc.1929, 1593.

  64. W. Baker andR. Robinson, J. chem. Soc.1932, 1798.

  65. H. O. House, J. Amer. chem. Soc.76, 1235 (1954).

    Article  CAS  Google Scholar 

  66. H. O. House andD. J. Reif, J. Amer. chem. Soc.77, 6525 (1955).

    Article  CAS  Google Scholar 

  67. H. O. House, J. Amer. chem. Soc.78, 2298 (1956).

    Article  CAS  Google Scholar 

  68. H. O. House, D. J. Reif, andR. L. Wasson, J. Amer. chem. Soc.79, 2490 (1957).

    Article  CAS  Google Scholar 

  69. H. O. House andD. J. Reif, J. Amer. chem. Soc.79, 6491 (1957).

    Article  CAS  Google Scholar 

  70. The mechanism depicted for the rearrangement of a chalkone-epoxide (XIX) is related to the base catalysed rearrangement (i) 1 → (ii) discovered byMeinwald andWiley 51.

  71. J. Meinwald andG. A. Wiley, J. Amer. chem. Soc.80, 3667 (1958).

    Article  CAS  Google Scholar 

  72. H. Grisebach andL. Patschke, Chem. Ber.93, 2326 (1960).

    Article  CAS  Google Scholar 

  73. T. A. Geissman, J. W. Mason, andJ. R. Rowe, Chem. & Ind.1959, 1577.

  74. T. A. Geissman andJ. W. Mason, Chem. & Ind.1960, 291.

  75. R. Robinson,The Structural Relations of Natural Products (Clarendon Press, Oxford 1955).

    Google Scholar 

  76. C. E. Dalgliesh, Adv. Protein Chem.10, 31 (1955).

    Article  CAS  Google Scholar 

  77. E. Leete andL. Marion, Canad. J. Chem.31, 126 (1953).

    Article  CAS  Google Scholar 

  78. I. Imaseki, S. Shibata, andM. Yamazaki, Chem. & Ind.1958, 1625.

  79. S. Shibata, I. Imaseki, andM. Yamasaki, Chem. Pharm. Bull.7 (4), 449 (1959).

    Article  Google Scholar 

  80. E. Leete, Chem. & Ind.1958, 1088.

  81. A. C. Neish, Canad. J. Bot.37, 1085 (1959).

    Article  CAS  Google Scholar 

  82. E. Leete, J. Amer. chem. Soc.82, 612 (1960).

    Article  CAS  Google Scholar 

  83. H. Grisebach andW. Brandner, Z. Naturf., in press.

  84. F. B. La Forge, H. L. Haller, andL. E. Smith, Chem. Rev.12, 182 (1933).

    Article  Google Scholar 

  85. H. L. Haller, L. D. Goodhue, andH. A. Jones, Chem. Rev.30, 33 (1942).

    Article  CAS  Google Scholar 

  86. L. Feinstein andM. Jacobson, Fortschr. Chem. org. Naturst.10, 423 (1953).

    CAS  Google Scholar 

  87. H. Bickel andH. Schmid, Helv. chim. Acta36, 664 (1953).

    Article  CAS  Google Scholar 

  88. N. Finch andW. D. Ollis, Proc. chem. Soc.1960, 176.

  89. A. Aneja, S. K. Mukerjee, andT. R. Seshadri, Tetrahedron4, 256 (1958).

    Article  CAS  Google Scholar 

  90. A. J. Birch, J. Schofield, andH. Smith, Chem. & Ind.1958, 1321.

  91. F. Lynen, B. W. Agranoff, H. Eggerer, U. Henning, andE. W. Möslein, Angew. Chem.71, 657 (1959).

    Article  CAS  Google Scholar 

  92. J. W. Cornforth andG. Popják, Tetrahedron LettersNo. 19, 29 (1959).

  93. S. H. Harper, J. chem. Soc.1940, 1178.

  94. N. Narasimhachari andT. R. Seshadri, Proc. Indian Acad. Sci. [A]35, 202 (1952).

    Article  Google Scholar 

  95. F. E. King andK. G. Neill, J. chem. Soc.1952, 4752.

  96. H. Suginome, J. org. Chem.24, 1655 (1959). Further work (private communication) has led to its full structure determination. We thank Dr.Suginome for this information.

    Article  CAS  Google Scholar 

  97. F. E. King, T. J. King, andA. J. Warwick, J. chem. Soc.1952, 1920.

  98. a. McGookin, A. Robertson, andW. B. Wilalley, J. chem. Soc.1940, 787.

  99. E. Simonitsch, H. Frei, andH. Schmid, Mh. Chem.88, 541 (1957).

    CAS  Google Scholar 

  100. E. M. Bickoff, R. L. Lyman, A. L. Livingston, andA. N. Booth, J. Amer. chem. Soc.80, 3969 (1958).

    Article  CAS  Google Scholar 

  101. T. R. Govindachari, K. Nagarajan, andB. R. Pai, J. chem. Soc.1956, 629.

  102. T. R. Govindachari, K. Nagarajan, andB. R. Pai, J. chem. Soc.1957, 545.

  103. J. Eisenbeiss andH. Schmid, Helv. chim. Acta42, 61 (1959).

    Article  CAS  Google Scholar 

  104. T. A. Geissmann andE. H. Hinreiner, Bot. Rev.18, 77 (1952).

    Article  Google Scholar 

  105. F. E. King, M. F. Grundon, andK. G. Neill, J. chem. Soc.1952, 4580.

  106. N. Narasimhachari andT. R. Seshadri, Proc. Indian Acad. Sci. [A], 271 (1949).

  107. B. F. Burrows, N. Finch, W. D. Ollis, andI. O. Sutherland, Proc. chem. Soc.1959, 150.

  108. B. F. Burrows, W. D. Ollis, andL. M. Jackman, Proc. chem. Soc.1960, 177.

  109. N. L. Dutta, J. Indian chem. Soc.33, 716 (1956);36, 165 (1959).

    CAS  Google Scholar 

  110. L. B. Norton andR. Hansberry, J. Amer. chem. Soc.67, 1609 (1945).

    Article  CAS  Google Scholar 

  111. F. E. King, T. J. King, andA. J. Warwick, J. chem. Soc.1952, 96.

  112. W. R. Chan, W. G. C. Forsyth, andC. H. Hassall, J. chem. Soc.1958, 3174.

  113. Huang-Minlon, E. Wilson, N. L. Wendler, andM. Tishler, J. Amer. chem. Soc.74, 5396 (1952).

    Google Scholar 

  114. R. B. Turner, J. Amer. chem. Soc.75, 3488 (1953).

    Google Scholar 

  115. S. Isoe andM. Nakazaki, Chem. & Ind.1959, 1574.

  116. O. A. Stamm, H. Schmid, andJ. Büchi, Helv. chim. Acta41, 2006 (1958).

    Article  CAS  Google Scholar 

  117. C. Djerassi, W. D. Ollis, andR. C. Russell, J. chem. Soc., in press.

  118. J.W. Clark-Lewis, inA. Albert, G. M. Badger, andC. W. Shoppee,Current Trends in Heterocyclic Chemistry (Butterworths Scientific Publications, 1958).

  119. V. K. Ahluwalia andT. R. Seshadri, J. chem. Soc.1957, 970.

  120. J. Polonsky, Bull. Soc. Chim. biol.25, 929 (1958) and earlier papers.

    Google Scholar 

  121. R. A. Finnegan andC. Djerassi, Tetrahedron LettersNo. 13, 11 (1959).

  122. T. R. Seshadri, Curr. Sci.26, 239 (1957).

    CAS  Google Scholar 

  123. C. Djerassi, E. J. Eisenbraun, B. Gilbert, A. J. Lemin, S. P. Marfey, andM. P. Morris, J. Amer. chem. Soc.80, 3686 (1958).

    Article  CAS  Google Scholar 

  124. C. Djerassi, E. J. Eisenbraun, R. A. Finnegan, andB. Gilbert, Tetrahedron LettersNo. 1, 10 (1959).

  125. Ref.54, p. 42.

  126. W. B. Whalley, Chem. & Ind.1956, 1049;Chemistry of Vegetable Tannins Symposium, Society of Leather Trades' Chemists, 151–160 (London 1956).

  127. H. Grisebach,The Biosynthesis of Isoflavones inRecent Developments in the Chemisty of Natural Phenolic Compounds (ed.W. Ollis, Pergamon Press) in the press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

We should like to thank ProfessorL. Ruzicka for his advice and detailed criticism of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grisebach, H., Ollis, W.D. Biogenetic relationships between coumarins, flavonoids, isoflavonoids, and rotenoids. Experientia 17, 4–12 (1961). https://doi.org/10.1007/BF02157921

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02157921

Keywords

Navigation