Skip to main content
Log in

Quantitative genetics of zooplankton life histories

  • Multi-Author Reviews
  • Population Biology of Freshwater Invertebrates
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Quantitative genetic techniques are powerful tools for use in understanding the microevolutionary process. Because of their size, lifespan, and ease of culture, many zooplankton species are ideal for quantitative genetic approaches. As model systems, studies of zooplankton life histories are becoming increasingly used for examination of the central paradigms of evolutionary theory. Two of the fundamental empirical questions that zooplankton quantitative genetics studies can answer are: 1) How much genetic variance exists in natural populations for life history traits? 2) What is the empirical evidence for trade-offs that permeate life history theory based on optimality approaches?

A review of existing data onDaphnia indicates substantial genetic variance for body size, clutch size, and age at first reproduction. Average broad-sense heritabilities for these three characters across 19 populations of 6 species are 0.31, 0.31, and 0.34, respectively. Although there is some discrepancy between the two pertinent studies that were designed to decompose the total genetic variance into its additive and non-additive components, a crude average seems to suggest that approximately 60% of the total genetic variance has an additive basis.

The existing data are somewhat inconsistent with respect to presence/absence of trade-offs (negative genetic correlations) among life history traits. A composite of the existing data seems to argue against the existence of strong trade-offs between offspring size and offspring number, between present and future reproduction, and between developmental rate and fecundity. However, there is some evidence for a shift toward more negative (less positive) covariances in more stressful environments (e.g., low food).

Zooplankton will prove to be very useful in future study in several important areas of research, including the genetics and physiology of aging, the importance of genotype-environment interaction for life history traits, and the evolution of phenotypic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carvahlo, G. R., The clonal ecology ofDaphnia magna (Crustacea: Cladocera). II. Thermal differentiation among seasonal clones. J. Anim. Ecol.56 (1987) 469–478.

    Article  Google Scholar 

  2. Cerny, M., and Hebert, P. D. N., Genetic diversity and breeding system variation inDaphnia pulicaria from North American lakes. Heredity71 (1993) 497–507.

    Article  Google Scholar 

  3. Charlesworth, B., Evolution in Age-Structured Populations. Cambridge University Press, Cambridge 1980.

    Google Scholar 

  4. Cheverud, J. M., A comparison of genetic and phenotypic correlations. Evolution42 (1988) 958–968.

    Article  PubMed  Google Scholar 

  5. Cole, L. C., The population consequences of life history phenomena. Q. Rev. Biol.29 (1954) 103–137.

    Article  CAS  PubMed  Google Scholar 

  6. Cowley, D. E., and Atchley, W. R., Development and quantitative genetics of correlation structure among body parts ofDrosophila melanogaster. Am. Nat.135 (1990) 242–268.

    Article  Google Scholar 

  7. Darwin, C. R., On the Origin of Species. John Murray, London 1859.

    Google Scholar 

  8. de Jong, G., and van Noordwijk, A. J., Acquisition and allocation of resources: genetic (co)variances, selection, and life histories. Am. Nat.139 (1992) 749–770.

    Article  Google Scholar 

  9. De Meester, L., Inbreeding and outbreeding depression inDaphnia. Oecologia96 (1993) 80–84.

    Article  PubMed  Google Scholar 

  10. De Meester, L., Life histories and habitat selection inDaphnia: divergent life histories ofD. magna clones differing in phototactic behavior. Oecologia97 (1994) 333–341.

    Article  PubMed  Google Scholar 

  11. Deng, H. W., and Kibota, T. T., The importance of the environmental variance-covariance structure in predicting evolutionary responses. Evolution (1994) in press.

  12. Dingle, H., and Hegmann, J. P. (eds) Evolution and Genetics of Life Histories. Springer-Verlag, New York 1982.

    Google Scholar 

  13. Ebert, D., The trade-off between offspring size and number inDaphnia magna: the influence of genetic, environmental and maternal effects. Arch. Hydrobiol. suppl.90 (1993) 453–473.

    Google Scholar 

  14. Ebert, D., Yampolsky, L., and Stearns, S. C., Genetics of life history inDaphnia magna. I. Heritabilities at two food levels. Heredity70 (1993) 335–343.

    Article  Google Scholar 

  15. Ebert, D., Yampolsky, L., and van Noordwijk, A. J., Genetics of life history inDaphnia magna. II. Phenotypic plasticity. Heredity70 (1993) 344–352.

    Article  Google Scholar 

  16. Endler, J. A., Natural Selection in the Wild. Princeton University Press, Princeton, New Jersey 1986.

    Google Scholar 

  17. Falconer, D. S., Introduction to Quantitative Genetics, 1st edn. Ronald, New York 1960.

    Google Scholar 

  18. Falconer, D. S., Introduction to Quantitative Genetics, 2nd edn. Longman, London 1981.

    Google Scholar 

  19. Falconer, D. S., Introduction to Quantitative Genetics, 3rd edn. Longman, London 1989.

    Google Scholar 

  20. Fisher, R. A., The correlation among relatives under the supposition of Mendelian inheritance. Trans. R. Soc. Edinb.52 (1918) 399–433.

    Article  Google Scholar 

  21. Fisher, R. A., The Genetical Theory of Natural Selection. Carendon Press, Oxford 1930.

    Book  Google Scholar 

  22. Gadgil, M., and Bossert, W. H., Life historical consequences of natural selection. Am. Nat.104 (1970) 1–24.

    Article  Google Scholar 

  23. Giesel, J. T., Murphy, P. A., and Manlove, M. N., The influence of temperature on genetic interrelationships of life history traits in a population ofDrosophila melanogaster: what tangled data sets we weave. Am. Nat.119 (1982) 464–479.

    Article  Google Scholar 

  24. Giesel, J. T., Murphy, P. A., and Manlove, M. N., An investigation of the effects of temperature on the genetic organizations of life history indices in three populations ofDrosophila melanogaster, in: Evolution and Genetics of Life Histories, pp. 189–207. Eds H. Dingle and J. P. Hegmann. Springer-Verlag, Berlin 1982.

    Google Scholar 

  25. Giesel, J. T., and Zettler, E. E., Genetic correlations of life historical parameters and certain fitness indices inDrosophila melanogaster: rm, rs, diet breadth. Oecologia47 (1980) 299–302.

    Article  PubMed  Google Scholar 

  26. Grant, B. R., Selection on bill characters in a population of Darwin's finches:Geospiza conirostris on Isla Genovesa, Galápagos. Evolution39 (1985) 523–532.

    CAS  PubMed  Google Scholar 

  27. Hebert, P. D. N., Beaton, M. J., Schwartz, S. S., and Stanton, D. J., Polyphyletic origins of asexuality inDaphnia pulex. I. Breeding-system variation and levels of clonal diversity. Evolution43 (1989) 1004–1015.

    PubMed  Google Scholar 

  28. Houle, D., Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution45 (1991) 630–648.

    Article  PubMed  Google Scholar 

  29. Houle, D., Comparing evolvability and variability of quantitative traits. Genetics130 (1992) 195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Innes, D. J., Genetics ofDaphnia obtusa: genetic load and linkage analysis in a cyclical parthenogen. J. Hered.80 (1989) 6–10.

    Article  Google Scholar 

  31. Innes, D. J., and Hebert, P. D. N., The origin and genetic basis of obligate parthenogenesis inDaphnia pulex. Evolution42 (1988) 1024–1035.

    Article  PubMed  Google Scholar 

  32. Kalisz, S., Variable selection on the timing of germination inCollinsiaverna (Scrophulariaceae). Evolution40 (1986) 479–491.

    Article  PubMed  Google Scholar 

  33. Kleiven, O. T., Larsson, P., and Hobaek, A., Sexual reproduction inDaphnia magna requires three stimuli. Oikos65 (1992) 197–206.

    Article  Google Scholar 

  34. Kohn, L. A. P., and Atchley, W. R., How similar are genetic correlation structures? Data from mice and rats. Evolution42 (1988) 467–481.

    PubMed  Google Scholar 

  35. Lande, R., Natural selection and random genetic drift in phenotypic evolution. Evolution30 (1976) 314–334.

    Article  PubMed  Google Scholar 

  36. Lande, R., Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution33 (1979) 402–416.

    PubMed  Google Scholar 

  37. Lande, R., The genetic covariance between characters maintained by pleiotropic mutations. Genetics94 (1980) 203–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lande, R., A quantitative genetic theory of life history evolution. Ecology63 (1982) 607–615.

    Article  Google Scholar 

  39. Lande, R., and Arnold, S. J., The measurement of selection on correlated characters. Evolution37 (1983) 1210–1226.

    Article  PubMed  Google Scholar 

  40. Larsson, P., Intraspecific variability in response to stimuli for males and ephippia formation inDaphnia pulex. Hydrobiologia225 (1991) 281–290.

    Article  Google Scholar 

  41. Lofsvold, D., Quantitative genetics of morphological differentiation inPeromyscus. I. Tests of the homogeneity of genetic covariance structure among species and subspecies. Evolution40 (1986) 559–573.

    PubMed  Google Scholar 

  42. Lofsvold, D., Quantitative genetics of morphological differentiation in Peromyscus. II. Analysis of selection and drift. Evolution42 (1988) 54–67.

    PubMed  Google Scholar 

  43. Lynch, M., Ecological genetics ofDaphnia pulex. Evolution37 (1983) 358–374.

    Article  PubMed  Google Scholar 

  44. Lynch, M., The limits to life history evolution inDaphnia. Evolution38 (1984) 465–482.

    Article  PubMed  Google Scholar 

  45. Lynch, M., Spontaneous mutations for life-history characters in an obligate parthenogen. Evolution39 (1985) 804–818.

    PubMed  Google Scholar 

  46. Lynch, M., The rate of polygenic mutation. Genet. Res.51 (1988) 137–148.

    Article  CAS  PubMed  Google Scholar 

  47. Lynch, M., and Deng, H. W., Genetic slippage in response to sex. Am. Nat.144 (1994) 242–261.

    Article  Google Scholar 

  48. Lynch, M., and Ennis, R., Resource availability, maternal effects, and longevity. Expl Geront.18 (1983) 147–165.

    Article  CAS  Google Scholar 

  49. Lynch, M., and Spitze, K., Evolutionary genetics ofDaphnia, in: Ecological Genetics, pp. 109–128. Ed. L. A. Real. Princeton University Press, Princeton, New Jersey 1994.

    Google Scholar 

  50. Lynch, M., Spitze, K., and Crease, T. J., The distribution of life history variation in theDaphnia pulex complex. Evolution43 (1989) 1724–1736.

    PubMed  Google Scholar 

  51. Lynch, M., Spitze, K., and Henderson, G., The population genetics ofDaphnia pulicaria in permanent environments (manuscript).

  52. Lynch, M., and Walsh, J. B., Fundamentals of Quantitative Genetics. I. Biology and Estimation Procedures. Sinauer, Sunderland, Massachusetts 1995.

    Google Scholar 

  53. MacArthur, R. H., and Wilson, E. O., The Theory of Island Biogeography. Princeton University Press, Princeton, New Jersey 1967.

    Google Scholar 

  54. McLaren, I. A., Inheritance of demographic and production parameters in the marine copepodEurytemora herdmani. Biol. Bull.151 (1976) 200–213.

    Article  CAS  PubMed  Google Scholar 

  55. Mort, M. A., and Wolf, H. G., Enzyme variability in largelakeDaphnia populations. Heredity55 (1985) 27–36.

    Article  Google Scholar 

  56. Mort, M. A., and Wolf, H. G., The genetic structure of large-lakeDaphnia populations. Evolution40 (1986) 756–766.

    Article  PubMed  Google Scholar 

  57. Mousseau, T. A., and Roff, D. A., Natural selection and the heritability of fitness components. Heredity59 (1987) 181–197.

    Article  PubMed  Google Scholar 

  58. Pace, M. L., Porter, K., and Feig, Y. S., Life history variation within a parthenogenetic population ofDaphnia parvula (Crustacea: Cladocera). Oecologia63 (1984) 43–51.

    Article  PubMed  Google Scholar 

  59. Price, T., and Schluter, D., On the low heritability of life-history traits. Evolution45 (1991) 853–861.

    Article  PubMed  Google Scholar 

  60. Reznick, D., New model systems for studying the evolutionary biology of aging — Crustacea. Genetica91 (1993) 79–88.

    Article  CAS  PubMed  Google Scholar 

  61. Rose, M. R., Antagonistic pleiotropy, dominance, and genetic variation. Heredity48 (1982) 63–78.

    Article  Google Scholar 

  62. Rose, M. R., Theories of life-history evolution. Am. Zool.23 (1983) 15–23.

    Article  Google Scholar 

  63. Rose, M. R., Genetic covariation inDrosophila life history: untangling the data. Am. Nat.123 (1984) 565–569.

    Article  Google Scholar 

  64. Schaffer, W. H., The evolution of optimal reproductive strategies: the effects of age structure. Ecology55 (1974) 291–303.

    Article  Google Scholar 

  65. Schemske, D. W., and Horvitz, C. C., Temporal variation in selection on a floral character. Evolution43 (1989) 461–465.

    Article  PubMed  Google Scholar 

  66. Shaw, R. G., The comparison of quantitative genetic parameters between populations. Evolution45 (1991) 143–151.

    Article  PubMed  Google Scholar 

  67. Spitze, K.,Chaoborus predation and life-history evolution inDaphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution45 (1991) 82–92.

    PubMed  Google Scholar 

  68. Spitze, K., Predator-mediated plasticity of prey life-history and morphology:Chaoborus americanus predation onDaphnia pulex. Am. Nat.139 (1992) 229–247.

    Article  Google Scholar 

  69. Spitze, K., Population structure inDaphnia obtusa: quantitative genetic and allozymic variation. Genetics135 (1993) 367–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Spitze, K., Burnson, J., and Lynch, M., The covariance structure of life-history characters inDaphnia pulex. Evolution45 (1991) 1081–1090.

    PubMed  Google Scholar 

  71. Sterns, S. C., Life-history tactics: a review of the ideas. Q. Rev. Biol.51 (1976) 3–47.

    Article  Google Scholar 

  72. Stearns, S. C., The evolution of life history traits: a critique of the theory and a review of the data. A. Rev. ecol. Syst.8 (1977) 145–171.

    Article  Google Scholar 

  73. Stearns, S. C., The Evolution of Life Histories. Oxford University Press, Oxford 1992.

    Google Scholar 

  74. Tessier, A. J., Young, A., and Leibold, M., Population dynamics and body-size selection inDaphnia. Limnol. Oceanogr.37 (1992) 1–13.

    Article  Google Scholar 

  75. Twombly, S., Inter- and intrapopulational variation in time to metamorphosis in a freshwater copepod. Freshwat. Biol.30 (1993) 105–118.

    Article  Google Scholar 

  76. van Noordwijk, A. J., and de Jong, G., Acquisition and allocation of resources: their influence on variation in life-history tactics. Am. Nat.128 (1986) 137–142.

    Article  Google Scholar 

  77. Walsh, J. B., and Lynch, M., Fundamentals of Quantitative Genetics. II. Evolutionary Dynamics. Sinauer, Sunderland, Massachusetts 1995.

    Google Scholar 

  78. Weider, L. J., Spatial and temporal genetic heterogeneity in a naturalDaphnia population. J. Plankton Res.7 (1985) 101–123.

    Article  Google Scholar 

  79. Wilkinson, G. S., Fowler, K., and Partridge, L., Resistance of genetic correlation structure to directional selection inDrosophila melanogaster. Evolution44 (1990) 1990–2003.

    Article  PubMed  Google Scholar 

  80. Williams, G. C., Pleiotropy, natural selection, and the evolution of senescence. Evolution11 (1957) 398–411.

    Article  Google Scholar 

  81. Wyngaard, G. A., Heritable life history variation in widely separated populations ofMesocyclops edax (Crustacea: Copepoda). Biol. Bull.170 (1986) 296–304.

    Article  Google Scholar 

  82. Yampolsky, L. Y., Genetic variation in the sexual reproduction rate within a population of a cyclic parthenogen,Daphnia magna. Evolution46 (1992) 833–837.

    Article  PubMed  Google Scholar 

  83. Yampolsky, L. Y., and Kalabushkin, B. A., The components of life-history trait variation in aDaphnia magna population. Hydrobiologia225 (1991) 255–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitze, K. Quantitative genetics of zooplankton life histories. Experientia 51, 454–464 (1995). https://doi.org/10.1007/BF02143198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02143198

Key words

Navigation