Skip to main content
Log in

Using tactics to reformulate formulae for resolution theorem proving

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

We present a method to optimize formulations of mathematical problems by exploiting the variability of first-order logic. The optimizing transformation is described as logic morphisms, whose operationalizations are tactics. The different behaviour of a resolution theorem prover for the source and target formulations is demonstrated by several examples. Such tactics give a user the possibility to formally manipulate problem formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Andrews,An Introduction to Mathematical Logic and Type Theory: To Truth through Proof (Academic Press, Orlando, FL, USA, 1986).

    Google Scholar 

  2. G. Antoniou and H.J. Ohlbach, Terminator, in:Proceedings of the 8th IJCAI, Morgan-Kaufmann, San Mateo, CA, USA, ed. A. Bundy (1983) pp. 916–919.

    Google Scholar 

  3. W.W. Bledsoe, Splitting and reduction heuristics in automatic theorem proving,Artificial Intelligence 2 (1971) 55–77.

    Google Scholar 

  4. A. Bundy,The Computer Modelling of Mathematical Reasoning (Academic Press, London, UK, 1983).

    Google Scholar 

  5. A. Bundy, The use of explicit plans to guide inductive proofs, in:Proceedings of the 9th CADE, LNCS 310, eds. E. Lusk and R. Overbeek (Springer-Verlag, Berlin, 1988) pp. 111–120.

    Google Scholar 

  6. A. Bundy, F. van Harmelen, C. Horn and A. Smaill, The OYSTER-CLAM system, in:Proceedings of the 10th CADE, LNAI 449, ed. M.E. Stickel (Springer-Verlag, Berlin, 1990) pp. 647–648.

    Google Scholar 

  7. A. Church, A formulation of the simple theory of types,Journal of Symbolic Logic 5 (1940) 56–68.

    Google Scholar 

  8. R.L. Constable et al.,Implementing Mathematics with the Nuprl Proof Development System (Prentice-Hall, Englewood Cliffs, NJ, USA, 1986).

    Google Scholar 

  9. N. Eisinger and M. Weigele, A technical note on splitting and clausal normal form algorithms, in:Proceedings of GWAI, Informatik-Fachberichte 76, ed. B. Neumann (Springer-Verlag, Berlin, 1983) pp. 225–231.

    Google Scholar 

  10. G. Gentzen, Untersuchungen über das logische Schließen I & II,Mathematische Zeitschrift 39 (1935) 176–210, 572–595.

    Google Scholar 

  11. M. Gordon, R. Milner and C. Wadsworth,Edinburgh LCF: A Mechanized Logic of Computation, LNCS 78 (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  12. L. Henkin, Completeness in the theory of types,Journal of Symbolic Logic 15 (1950) 81–91.

    Google Scholar 

  13. M. Kerber,On the Representation of Mathematical Concepts and their Translation into First Order Logic, Ph.D. Thesis, Fachbereich Informatik, Universität Kaiserslautern, Kaiserslautern, Germany (1992).

    Google Scholar 

  14. R.E. Korf, Toward a model of representation changes,Artificial Intelligence 14 (1980) 41–78.

    Google Scholar 

  15. J. McCarthy, A tough nut for proof procedures, AI Project Memo 16, Stanford University, Stanford, CA, USA (1964).

    Google Scholar 

  16. H.J. Ohlbach and J.H. Siekmann, The Markgraf Karl Refutation Procedure, in:Computational Logic — Essays in Honor of Alan Robinson, eds. J.-L. Lassez and G. Plotkin (MIT Press, Cambridge, MA, 1991) pp. 41–112.

    Google Scholar 

  17. F.J. Pelletier, Seventy-five problems for testing automatic theorem provers,Journal of Automated Reasoning 2 (1986) 191–216.

    Google Scholar 

  18. F.J. Pelletier, The philosophy of automated theorem proving, in:Proceedings of the 12th IJCAI, Morgan-Kaufmann, San Mateo, CA, USA, eds. J. Mylopoulos and R. Reiter (1991) pp. 538–543.

    Google Scholar 

  19. G. Pólya,Mathematical Discovery — On Understanding, Learning, and Teaching Problem Solving (Princeton University Press, Princeton, NJ, 1962/1965).

    Google Scholar 

  20. A. Präcklein, (ed.), The MKRP User-Manual, SEKI Working Paper SWP-92-03, Fachbereich Informatik, Universität des Saarlandes, Im Stadtwald, Saarbrücken, Germany, 2nd edn (1992).

    Google Scholar 

  21. A. Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen,Studia Philosophia 1 (1936) 261–405.

    Google Scholar 

  22. C. Walther, A many-sorted calculus based on resolution and paramodulation, in:Proceedings of the 8th IJCAI, Morgan-Kaufmann, San Mateo, CA, ed. A. Bundy (1983) pp. 882–891.

    Google Scholar 

  23. L. Wos, R. Overbeek, E. Lusk and J. Boyle,Automated Reasoning — Introduction and Applications (Prentice-Hall, Englewood Cliffs, NJ, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was done when both authors were working at the Fachbereich Informatik, Universität des Saarlandes, D-66041 Saarbrücken, Germany, and was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerber, M., Präcklein, A. Using tactics to reformulate formulae for resolution theorem proving. Ann Math Artif Intell 18, 221–241 (1996). https://doi.org/10.1007/BF02127748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02127748

Keywords

Navigation