Skip to main content
Log in

Heat shock proteins and infection: Interactions of pathogen and host

  • Multi-Author Reviews
  • Heat Shock Proteins
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Invasive microorganisms encounter defensive attempts of the host to starve, destroy and eliminate the infection. In experimental model systems aiming to imitate defensive actions of the host, microorganisms respond by the rapid acceleration in the rate of expression of heat shock and other stress proteins. Heat shock proteins (hsp) of most if not all pathogens are major immune targets for both B- and T-cells. Host cells involved in the defensive action cannot avoid exposure to their own reactive compounds, such as oxygen radicals, resulting in premature cell death and tissue damage. Long-term consequences to the host may include cancer. In cells in tissue culture, induction of host-specific hsps occurs upon exposure to oxidants and in viral infections. Drugs that bind to members of the hsp70 family induce peroxisome proliferation and hepatocarcinoma, but may open the way for the development of novel drugs in support of antimetabolite treatment of infections and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Aarstad, H. J., Thiele, D., and Seljelid, R., The effect of various contexts of stress on the mouse spleen lymphocytes and macrophage co-stimulatory activity. Scand. J. Immun.33 (1991) 461–472.

    Article  CAS  Google Scholar 

  2. Alvares, K., Carrillo, A., Yuan, P. M., Kawano, H., Morimoto, R. I., and Reddy, J. K., Identification of cytosolic peroxisome proliferator binding protein as a member of the heat shock protein Hsp70 family. Proc. natl Acad. Sci. USA87 (1990) 5293–5297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ames, B. N., Dietary carcinogens and anticarcinogens. Science221 (1983) 1256–1264.

    Article  CAS  PubMed  Google Scholar 

  4. Ames, B. N., and Gold, L. S., Chemical carcinogenesis: Too many rodent carcinogens. Proc. natl Acad. Sci. USA87 (1990) 7772–7776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Babior, B. M., Oxidants from phagocytes: agents of defense and destruction. Blood64 (1984) 959–966.

    Article  CAS  PubMed  Google Scholar 

  6. Breton-Gorius, J., Mason, D. Y., Buriot, D., Vilde, J. L., and Griscelli, C., Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections. Am. J. Path.99 (1980) 413–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Buchmeier, N. A., and Heffron, F., Induction ofSalmonella stress protein upon infection of macrophages. Science248 (1990) 730–732.

    Article  CAS  PubMed  Google Scholar 

  8. Chance, B., Sies, H., and Boveris, A., Hydroperoxide metabolism in mammalian organs. Physiol. Rev.59 (1979) 527–605.

    Article  CAS  PubMed  Google Scholar 

  9. Christman, M. F., Morgan, R. W., Jacobson, F. S., and Ames, B. N., Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins inSalmonella typhimurium. Cell41 (1985) 753–762.

    Article  CAS  PubMed  Google Scholar 

  10. Cohen, I. R., and Young, D. B., The immune system's view of invading microorganisms, autoimmunity and the immunological homunculus. Immun. Today12 (1991) 105–110.

    Article  CAS  PubMed  Google Scholar 

  11. Cohen, S. S., and Barner, H. D., Studies on unbalanced growth inEscherichia coli. Proc. natl Acad. Sci. USA40 (1955) 885–893.

    Article  Google Scholar 

  12. Collins, P. L., and Hightower, L. E., Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J. Virol.44 (1982) 703–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Donati, Y. R. A., Slosman, D. O., and Polla, B. S., Oxidative injury and heat shock response. Biochem. Pharmac.40 (1990).

  14. Drahos, D. J., and Hendrix, R. W., Effect of bacteriophage lambda infection on synthesis of GroE protein and otherEscherichia coli proteins. J. Bact.149 (1982) 1050–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duesberg, P. H., Human immunodeficiency virus and acquired immunodeficiency syndrome: correlation but not causation. Proc. natl Acad. Sci. USA86 (1989) 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elion, G. B., The purine path to chemotherapy. Science244 (1989) 41–47.

    Article  CAS  PubMed  Google Scholar 

  17. Flesch, I. E. A., and Kaufman, S. H. E., Attempts to characterize the mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages. Infect. Immun.56 (1988) 1464–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flesch, I. E. A., and Kaufman, S. H. E., Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: role of reactive nitrogen intermediates. Infect. Immun.59 (1991) 3213–3218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forman, H. J., and Thomas, M. J., Oxidant production and bactericidal activity of phagocytes. A. Rev. Physiol.48 (1986) 669–680.

    Article  CAS  Google Scholar 

  20. Fraga, C. G., Shigenaga, M. K., Park, J.-W., Degan, P., and Ames, B. N., Oxidative damage of DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc. natl Acad. Sci. USA87 (1990) 4533–4537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoiseth, S. K., and Stocker, B. A. D., Aromatic-dependentSalmonella typhimurium are non virulent and effective as live vaccines. Nature291 (1981) 238–239.

    Article  CAS  PubMed  Google Scholar 

  22. Irving, W., Donnelly, P., and Starke, I., Infection and the Immunocompromised Patient. Ed. A. Geddes. Current Medical Literature Ltd, London 1985.

    Google Scholar 

  23. Ivins, B. E., Welkos, S. L., Knudson, G. B., and Little, S. F., Immunization against anthrax with aromatic compound-dependent (Aro) mutants ofBacillus anthracis and with recombinant strains ofBacillus subtilis that produce anthrax protective antigen. Infect. Immun.58 (1990) 303–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iyer, G. Y. N., Islam, D. M. F., and Quastel, J. H., Biochemical aspects of phagocytosis. Nature192 (1961) 535–545.

    Article  CAS  Google Scholar 

  25. Kaufmann, S. H. E., Vath, U., Thole, J. E. R., Van Embden, J. D. A., and Emmrich, F., Enumeration of T cells reactive withMycobacterium tuberculosis organisms and specific for the recombinant 64 kDa protein. Eur. J. Immun.17 (1987) 351–357.

    Article  CAS  Google Scholar 

  26. Kaufmann, S. H. E., Immunity against intracellular bacteria: Biological effector functions and antigen specificity of T lymphocytes. Curr. Topics Microbiol. Immun.138 (1988) 141–176.

    CAS  Google Scholar 

  27. Khandjian, E. W., and Türler, H., Simian virus 40 and Polyoma virus induce synthesis of heat shock proteins in permissive cells. Molec. cell. Biol.3 (1983) 1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kochan, J., and Murialdo, H., Stimulation of GroE synthesis inEscherichia coli by bacteriophage lambda infection. J. Bact.149 (1982) 1166–1170).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kornberg, A., DNA Replication. W. H. Freeman and Company, San Francisco 1980.

    Google Scholar 

  30. Kyprianou, N., and Isaacs, J. T., ‘Thymineless’ death in androgen-independent prostatic cancer cells. Biochem. biophys. Res. Commun.165 (1989) 73–81.

    Article  CAS  PubMed  Google Scholar 

  31. Lamb, J. R., Ivanyi, J., Rees, A. D. M., Rothbard, J. B., Howland, K., Young, R. A., and Young, D. B., Mapping of T cell epitopes using recombinant antigens and synthetic peptides. EMBO J.6 (1987) 1245–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. LaThangue, N. B., Shriver, K., Dawson, C., and Chan, W. L., Herpes simplex virus infection causes the accumulation of a heat shock protein. EMBO J.3 (1984) 267–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Loeb, L. A., Endogenous carcinogenesis: Molecular oncology into the twenty-first century. Cancer Res.49 (1989) 5489–5496.

    CAS  PubMed  Google Scholar 

  34. Matin, A., The molecular basis of carbon-starvation-induced general resistance inEscherichia coli. Molec. Microbiol.5 (1991) 3–10.

    Article  CAS  Google Scholar 

  35. McClarty, G. A., Chan, A. K., Choy, B. K., and Wright, J. A., Increased ferritin gene expression is associated with increased ribonucleotide reductase gene expression and the establishment of hydroxyurea resistance in mammalian cells. J. biol. Chem.265 (1990) 7539–7547.

    Article  CAS  PubMed  Google Scholar 

  36. Mims, C. A., The Pathogenesis of Infectious Disease, 3rd ed. Academic Press, London 1987.

    Google Scholar 

  37. Morgan, R. W., Christman, M. F., Jacobson, F. S., Storz, G., and Ames, B. N., Hydrogen peroxide-inducible proteins inSalmonella typhimurium overlap with heat shock and other stress proteins. Proc. natl Acad. Sci. USA83 (1986) 8059–8063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morimoto, R. I., Tissières, A., and Georgopoulos, C., The stress response, function of proteins, and perspectives, in: Stress Proteins in Biology and Medicine, pp. 1–36. Eds R. I. Morimoto, A. Tissières and C. Georgopoulos. Cold Spring Harbor Laboratory Press 1990.

  39. Neilands, J. B., Siderophores: diverse roles in microbial and human physiology, in: Iron Metabolism, pp. 107–124. Ciba Foundation Symposia 52 (new series). Elsevier, Amsterdam 1977.

    Google Scholar 

  40. Nevins, J. R., Induction of the synthesis of a 70,000 Dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell29 (1982) 913–919.

    Article  CAS  PubMed  Google Scholar 

  41. O'Callaghan, D., Maskell, D., Liew, F. Y., Easmon, C. S. F., and Dougan, G., Characterization of aromatic- and purine-dependentSalmonella typhimurium: attenuation, persistence, and ability to induce protective immunity in BALB/c mice. Infect. Immun.56 (1988) 419–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oda, T., Akaike, T., Hamamoto, T., Suzuki, F., Hirano, T., and Maeda, H., Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science244 (1989) 974–976.

    Article  CAS  PubMed  Google Scholar 

  43. Peterson, P. K., Chao, C. C., Molitor, T., Murtaugh, M., Strgar, F., and Sharp, B. M., Stress and pathogenesis of infectious disease. Rev. infect. Dis.13 (1991) 710–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Polla, B. S., Bonventre, J. V., and Krane, S. M., 1,25-Dihydroxyvitamin D3 increases the toxicity of hydrogen peroxide in the human monocytic line U937: the role of calcium and heat shock. J. Cell Biol.107 (1988) 373–380.

    Article  CAS  PubMed  Google Scholar 

  45. Polla, B. S., Healy, A. M., Wojno, W. C., and Krane, S. M., Hormone 1α,25-dihydroxyvitamin D3 modulates heat shock response in monocytes. Am. J. Physiol.252 (1987) C640-C649.

    Article  CAS  PubMed  Google Scholar 

  46. Polla, B. S., and Kantengwa, S., Heat shock proteins and inflammation, in: Current Topics in Microbiological Immunology, vol. 167 pp. 92–105. Ed. S. H. E. Kaufmann. Springer Verlag, Berlin 1991.

    Google Scholar 

  47. Preston-Martin, S., Pike, M. C., Ross, R. K., Jones, P. A., and Henderson, B. E., Increased cell division as a cause of human cancer. Cancer Res.50 (1990) 7415–7421.

    CAS  PubMed  Google Scholar 

  48. Pryor, W. A., Oxy-radicals and related species: Their formation, life-times, and reactions. A. Rev. Physiol.48 (1986) 657–667.

    Article  CAS  Google Scholar 

  49. Rénia, L., Mattei, D., Goma, J., Pied, S., Dubois, P., Miltgen, F., Nüssler, A., Matile, H., Menégaux, F., Gentilini, M., and Mazier, D., A malaria heat-shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell-mediated cytotoxic mechanisms by nonparenchymal liver cells. Eur. J. Immun.20 (1990) 1445–1449.

    Article  Google Scholar 

  50. Rolfe, R., On the mechanism of thymineless death inBacillus subtilis. Proc. natl Acad. Sci. USA57 (1967) 114–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salin, M. L., and McCord, J. M., Superoxide dismutases in polymorphonuclear leucocytes. J. clin. Invest.54 (1974) 1005–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salin, M. L., and McCord, J. M., Free radicals and inflammation: protection of phagocytosing leukocytes by superoxide dismutase. J. clin. Invest.56 (1975) 1319–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shinnick, T. M., Heat shock proteins as antigens of bacterial and parasitic pathogens, in: Current Topics in Microbiological Immunology, vol. 167, pp. 145–160. Ed. S. H. E. Kaufmann. Springer Verlag, Berlin 1991.

    Google Scholar 

  54. Sokolovic, Z., Fuchs, A., and Goebel, W., Synthesis of species-specific proteins by virulent strains ofListeria monocytogenes. Infect. Immun.58 (1990) 3582–3587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spitznagel, J. K., Constitutive defences of the body, in: Mechanisms of Microbial Disease, pp. 68–93. Eds M. Schaechter, G. Medoff and D. Schlessinger. Williams & Wilkins, Baltimore 1989.

    Google Scholar 

  56. Styblo, K., Overview and epidemiologic assessment of the current global tuberculosis situation with an emphasis on control in developing countries. Rev. infect. Dis.11, Suppl. 2 (1989) S339-S346.

    Article  PubMed  Google Scholar 

  57. Subjeck, J. R., and Shyy, T.-T., Stress protein systems of mammalian cells. Am. J. Physiol.250 (1986) C1-C17.

    Article  CAS  PubMed  Google Scholar 

  58. Themel, K. G., and Lüders, C. J., Die Bedeutung tuberkulöser Narben für die Entstehung des peripheren Lungenkarzinoms: Ein Beitrag zum Krankheitsbild des Lungennarbenkrebses. Dt. med. Wschr.80 (1955) 1360–1363.

    Article  CAS  Google Scholar 

  59. Thole, J. E. R., van Schooten, W. C. A., Keulen, W. J., Hermans, P. W. M., Janson, A. A. M., de Fries, R. R. P., Kolk, A. H. J., and van Embden, J. D. A., Use of recombinant antigens expressed inEscherichia coli K-12 to map B cell and T cell epitopes on the immunodominant 65 kDa protein ofMycobacterium bovis BCG. Infect. Immun.56 (1988) 1633–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tong, C., Fazio, M., and Williams, G. M., Cell cycle-specific mutagenesis at the hypoxanthine phosphoribosyltransferase locus in adult rat liver epithelial cells. Proc. natl Acad. Sci. USA77 (1980) 7377–7379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. VanBogelen, R. A., Kelley, P. M., and Neidhart, F. C., Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides inEscherichia coli. J. Bact.169 (1987) 26–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weinberg, E. D., Iron withholding: a defense against infection and neoplasia. Physiol. Rev.64 (1984) 65–102.

    Article  CAS  PubMed  Google Scholar 

  63. Woods, D. D., The biochemical mode of action of the sulfonamide drugs. J. gen. Microbiol.29 (1962) 687–702.

    Article  CAS  Google Scholar 

  64. Yin, H. L., and Stossel, T. P., The mechanism of phagocytosis, in: Phagocytosis, Past and Future, pp. 12–27. Eds M. Karnovsky and L. Bolis. Academic Press, New York 1982.

    Google Scholar 

  65. Young, D. B., Stress proteins as antigens during infection, in: Stress Proteins in Inflammation, pp. 155–168. Eds R. Burdon, C. Rice-Evans, D. Blake and V. Winrow, Richelieu Press, London 1990.

    Google Scholar 

  66. Young, D. B., Lathigra, R., Hendrix, R., Sweetser, D., and Young, R. A., Stress proteins are immune targets in leprosy and tuberculosis. Proc. natl Acad. Sci. USA85 (1988) 4267–4270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Young, D., Garbe, T., Lathigra, R., and Abou-Zeid, C., Protein antigens: structure, function and regulation, in: Molecular Biology of the Mycobacteria, pp. 1–35. Ed. J.-J. McFadden. Surrey University Press, Guildford 1990.

    Google Scholar 

  68. Young, D. B., Mehlert, A., and Smith, D. F., Stress proteins and infectious diseases, in: Stress Proteins in Biology and Medicine, pp. 131–165. Eds R. Morimoto, A. Tissières and C. Georgopoulos. Cold Spring Harbor Laboratory Press 1990.

  69. Young, D. B., and Garbe, T. R., Heat shock proteins and antigens ofMycobacterium tuberculosis. Infect. Immun.59 (1991) 3086–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ziegler, H. K., Induced defenses of the body, in: Mechanisms of Microbial Disease, pp. 68–93. Eds M. Schaechter, G. Medoff and D. Schlessinger. Williams & Wilkins, Baltimore 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbe, T.R. Heat shock proteins and infection: Interactions of pathogen and host. Experientia 48, 635–639 (1992). https://doi.org/10.1007/BF02118308

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02118308

Key words

Navigation