Skip to main content
Log in

Evolution of alu family repeats since the divergence of human and chimpanzee

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The DNA sequences of three members of the Alu family of repeated sequences located 5′ to the chimpanzee α2 gene have been determined. The base sequences of the three corresponding human Alu family repeats have been previously determined, permitting the comparison of identical Alu family members in human and chimpanzee. Here we compare the sequences of seven pairs of chimpanzee and human Alu repeats. In each case, with the exception of minor sequence differences, the identical Alu repeat is located at identical sites in the human and chimpanzee genomes. The Alu repeats diverge at the rate expected for nonselected sequences. Sequence conversion has not replaced any of these 14 Alu family members since the divergence between chimpanzee and human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Proc Natl Acad Sci USA 77:7323–7327

    PubMed  Google Scholar 

  • Britten RJ, Kohne DE (1968) Science 161:529–540

    PubMed  Google Scholar 

  • Brown SDM, Dover G (1981) J Mol Biol 150:441–446

    PubMed  Google Scholar 

  • Chang L-YE, Slightom JL (1984) J Mol Biol 180:767–784

    PubMed  Google Scholar 

  • Daniels GR, Deininger PL (1983) Nucleic Acids Res 11:7595–7610

    PubMed  Google Scholar 

  • Daniels GR, Fox GM, Lowensteiner DL, Schmid CW, Deininger PL (1983) Nucleic Acids Res 11:7579–7593

    PubMed  Google Scholar 

  • Deininger PL, Schmid CW (1979) J Mol Biol 127:437–460

    PubMed  Google Scholar 

  • Deininger PL, Jolly DJ, Rubin CM, Friedman T, Schmid CW (1981) J Mol Biol 151:17–33

    PubMed  Google Scholar 

  • Dover GA, Flavell RB (1984) Cell 38:622–623

    PubMed  Google Scholar 

  • Fukumaki Y, Collins F, Kole R, Stoeckert CJ, Jagadeeswaran P, Duncan CH, Weissman SM (1983) Cold Spring Harbor Symp Quant Biol 47:1079–1081

    PubMed  Google Scholar 

  • Hess JF, Fox GM, Schmid CW, Shen C-K J (1983) Proc Natl Acad Sci USA 80:5970–5974

    PubMed  Google Scholar 

  • Hess JF, Schmid CW, Shen C-KJ (1984) Science 226:67–69

    PubMed  Google Scholar 

  • Jagadeeswaran PMG, Forget BG, Weissman SM (1981) Cell 26:141–142

    PubMed  Google Scholar 

  • Jagadeeswaran P, Tuan D, Forget BG, Weissman SM (1982) Nature 296:469–471

    PubMed  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Nature 314:67–72

    PubMed  Google Scholar 

  • Jelinek WR, Schmid CW (1982) Annu Rev Biochem 51:813–844

    PubMed  Google Scholar 

  • Lauer J, Shen C-KJ, Maniatis T (1980) Cell 20:119–130

    PubMed  Google Scholar 

  • Maeda N, Bliska JB, Smithies O (1983) Proc Natl Acad Sci USA 80:5012–5016

    PubMed  Google Scholar 

  • Martin SL, Voliva CF, Burton FH, Edgell MH, Hutchison CA III (1984) Proc Natl Acad Sci USA 81:2308–2312

    PubMed  Google Scholar 

  • Martin SL, Voliva CF, Hardies SC, Edgell MH, Hutchison CA III (1985) Mol Biol Evol 2:127–146

    PubMed  Google Scholar 

  • Miesfeld R, Krystal M, Arnheim N (1981) Nucleic Acids Res 9:5931–5947

    PubMed  Google Scholar 

  • Orkin SH, Michelson A (1980) Nature 286:538–540

    PubMed  Google Scholar 

  • Ottolenghi S, Giglioni B (1982) Nature 300:770–771

    PubMed  Google Scholar 

  • Proudfoot NJ, Gil A, Maniatis T (1982) Cell 31:553–563

    PubMed  Google Scholar 

  • Rice NR (1972) In: Smith HH (ed) Evolution of genetic systems. Gordon & Breach, New York, p 44

    Google Scholar 

  • Sawada I, Beal MP, Shen C-KJ, Chapman B, Wilson AC (1983) Nucleic Acids Res 11:8087–8101

    PubMed  Google Scholar 

  • Schmid CW, Jelinek WR (1982) Science 216:1065–1070

    PubMed  Google Scholar 

  • Schmid CW, Shen C-KJ (1985) The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 323–358

    Google Scholar 

  • Shen C-KJ, Maniatis T (1982) J Mol Appl Gen1:343–360

    Google Scholar 

  • Sibley CG, Ahlquist JE (1984) J Mol Evol 20:2–15

    PubMed  Google Scholar 

  • Singer MF, Thayer RE, Grimaldi G, Lerman MI, Fanning TG (1983) Nucleic Acids Res 11:5739–5745

    PubMed  Google Scholar 

  • Ullu E, Marphy S, Melli M (1982) Cell 29:195–202

    PubMed  Google Scholar 

  • Van Ardsell SW, Denison RA, Bernstein LB, Weiner AM (1981) Cell 26:11–17

    PubMed  Google Scholar 

  • Willard C, Wong E, Hess JF, Shen C-KJ, Chapman B, Wilson AB, Schmid CW (1985) Comparison of human and chimpanzee η1 globin genes. J Mol Evol XX:XXX-XXX

    Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Proc Natl Acad Sci USA 77:2158–2162

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawada, I., Willard, C., Shen, CK.J. et al. Evolution of alu family repeats since the divergence of human and chimpanzee. J Mol Evol 22, 316–322 (1985). https://doi.org/10.1007/BF02115687

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02115687

Key words

Navigation