Skip to main content
Log in

Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The marine, free-living Stilbonematinae (Nematoda: Desmodoridae) are remarkable for the ectosymbiotic, prokaryotic microorganisms that populate their entire body surface. These nematodes occur in sulfidic sediments in the microoxic zone just above the sulfide maximum. Several facts point to a chemolithotrophic, sulfide oxidizing nature of the microorganisms. The oxygen uptake of three species was measured with and without their microbial coat using Cartesian and Gradient Diver microrespirometry in February 1989 at Carrie Bow Cay (Belize Barrier Reef). Symbiont-free stilbonematids exhibited constant and uniform oxygen uptake rates over several hours; rates which are significantly lower than those of oxyphilic nematodes. Freshly extracted stilbonematids, with intact bacterial coats, consumed significantly more oxygen than symbiont-free worms in the first 3 h of measurement. While the rates of aposymbiotic worms were more or less constant over time, the rates of symbiont-carrying worms exhibited a conspicuous drop during prolonged respiration. InStilbonema sp., symbiont carrying individuals kept under oxygenated conditions for more than 12 h had a respiration rate similar to those of aposymbiotic specimens. When such worms were re-incubated in sulfide-enriched seawater the respiration rate was significantly elevated. The possibility of “recharging” the oxygenated symbiosis system via sulfide-uptake is seen as an indication that storage of reduced sulfur compounds, or reserve substances synthetized in the presence of sulfide, play a decisive role in the metabolisms of the symbiotic bacteria. Migration of nematodes between sulfidic and oxidized sediment-layers are, most likely, the key to understanding the success of this nematode-bacteria symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Boaden, P. (1974). Three new thiobiotic gastrotrichs. Cah. Biol. mar. 15: 367–378

    Google Scholar 

  • Boaden, P. (1975). Anaerobiosis, meiofauna and early metazoan evolution. Zool. Scr. 4: 21–24

    Google Scholar 

  • Childress, J. J., Mickel, T. J. (1982). Oxygen and sulfide consumption rates of the vent clamCalyptogenia pacifica. Mar. Biol. Lett. 3: 73–79

    Google Scholar 

  • Dando, P. R., Southward, A. J., Southward, E. C. (1986). Chemoautotrophic symbionts in the gills of the bivalve molluscLucinoma borealis and the sediment chemistry of its habitat. Proc. R. Soc. (Ser. B) 227: 227–247

    Google Scholar 

  • Fenchel, T., Finlay, B. J. (1989).Kentrophoros: A mouthless ciliate with a symbiotic kitchen garden. Ophelia 30: 75–93

    Google Scholar 

  • Giere, O., Wirsen, C. O., Schmidt, C., Jannasch, H. W. (1988). Contrasting effects of sulfide and thiosulfate on symbiotic CO2-assimilation ofPhallodrilus leukodermatus (Annelida). Mar. Biol. 97: 413–419

    Article  Google Scholar 

  • Hamburger, K. (1981). A gradient diver for measurement of respiration in individual organisms from the micro- and meiofauna. Mar. Biol. 61: 179–183

    Article  Google Scholar 

  • Hammen, C. S., Osborne, P. J. (1959). Carbon dioxide fixation in marine invertebrates: a survey of major phyla. Science, N. Y. 130: 1409–1410

    Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. (1985). The biochemical versatility of chemosynthetic bacteria at deep-sea hydrothermal vents. Bull. biol. Soc. Wash. 6: 325–334

    Google Scholar 

  • Jensen, P. (1986). Nematode fauna in the sulphide-rich brine seep and adjacent bottoms of the East Flower Garden, NW Gulf of Mexico. Mar. Biol. 92: 489–502

    Article  Google Scholar 

  • Jensen, P. (1987a). Feeding ecology of free-living aquatic nematodes. Mar. Ecol. Prog. Ser. 35: 187–196

    Google Scholar 

  • Jensen, P. (1987b). Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic freeliving marine nematodes. Oecologia 71: 564–567

    Article  Google Scholar 

  • Kelly, P. D. (1982). Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil. Trans. R. Soc. (Ser. B) 298: 473–497

    Google Scholar 

  • Klekowski, R. Z. (1971). Cartesian diver respirometry for aquatic animals. Polskie Archwm. Hydrobiol. 18: 93–114

    Google Scholar 

  • Klekowski, R. Z., Schiemer, F., Duncan, A. (1980). Ampulla gradient diver microrespirometry. Ekol. Pol. 28 (4): 675–683

    Google Scholar 

  • Kuenen, J. G., Beudeker, R. F. (1982). Microbiology of thiobacilli and other sulphur oxidizing autotrophs, mixotrophs and heterotrophs. Phil. Trans. R. Soc. (Ser. B) 298: 473–497

    Google Scholar 

  • Lasserre, P. (1976). Metabolic activities of benthic microfauna and meiofauna: recent advances and review of suitable methods of analysis. In: Mac Cave, I. N. (ed.) The benthic boundary layer. Plenum, New York, p. 95–142

    Google Scholar 

  • Lovlie, A., Zeuthen, E. (1962). The gradient diver — a recording instrument for gasometric micro-analysis. Compt. Rend. Trav. Lab. Carlsberg 32(31): 512–534

    Google Scholar 

  • Nexø, B. A., Hamburger, K., Zeuthen, E. (1972). Simplified microgasometry with gradient divers. Compt. Rend. Trav. Lab. Carlsberg 39(4): 33–63

    Google Scholar 

  • Ott, J. A. (1972). Determination of fauna boundaries of nematodes in an intertidal sand flat. Int. Revue ges. Hydrobiol. 57(4): 645–663

    Google Scholar 

  • Ott, J. A., Novak, R. (1989). Living at an interface: Meiofauna at the oxygen/sulfide boundary of marine sediments. In: Ryland, J. S., Tyler, P. A. (eds.). Reproduction, genetics and distribution of marine organisms. Olsen & Olsen, Fredensborg, p. 415–422

    Google Scholar 

  • Ott, J. A., Rieger, G., Rieger, R., Enderes, F. (1982). New mouthless interstitial worms from the sulfide system: symbiosis with prokaryotes. Pubbl. Staz. zool. Napoli (I: Mar. Ecol.) 3(4): 313–333

    Google Scholar 

  • Ott, J. A., Schiemer, F. (1973). Respiration and anaerobiosis of free living nematodes from marine and limnic sediments. Neth. J. Sea Res. 7: 233–243

    Article  Google Scholar 

  • Powell, E. N., Crenshaw, M. A., Rieger, R. M. (1979). Adaptation to sulfide in the meiofauna of the sulfide system. I.35S-sulfide accumulation and the presence of a sulfide detoxification system. J. exp. mar. Biol. Ecol. 37: 57–76

    Article  Google Scholar 

  • Riemann, F., Schrage, M. (1988). Carbon dioxide as an attractant for the free-living marine nematodeAdoncholaimus thalassophygas. Mar. Biol. 98: 81–95

    Article  Google Scholar 

  • Schiemer, F. (1987). Nematoda. In: Pandian, T. J., Vernberg, F. J. (eds.). Animal energetics, Vol. 1. Academic Press, New York, p. 185–215

    Google Scholar 

  • Schiemer, F., Duncan, A. (1974). The oxygen consumption of a freshwater benthic nematodeTobrilus gracilis (Bastian). Oecologia 15: 212–216

    Article  Google Scholar 

  • Southward, E. C. (1986). Gill symbionts in thyasirids and other bivalve mollusca. J. mar. biol. Ass. U.K. 66: 889–914

    Google Scholar 

  • Steudel, R. (1989). On the nature of the “elemental sulfur” (S°) produced by sulfur-oxidizing bacteria — a model for S° globules. In: Schlegel, H. G., Bowien, B. (eds.). Biology of autotrophic bacteria. Science Tech. Publ., Madison, p. 193–217

    Google Scholar 

  • Vetter, R. D. (1985). Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88: 33–42

    Article  Google Scholar 

  • Wieser, W. (1959). Eine ungewöhnliche Assoziation zwischen Blaualgen und freilebenden marinen Nematoden. Österr. bot. Zeitschr. 106: 81–87

    Article  Google Scholar 

  • Wieser, W. (1960). Benthic studies in Buzzards Bay II. The meiofauna. Limnol. Oceanogr. 5: 121–137

    Google Scholar 

  • Wieser, W. (1975). Meiofauna as a tool in the study of sediment heterogeneity: ecophysiological aspects. A review. Cah. Biol. Mar. 16: 647–670

    Google Scholar 

  • Wieser, W., Ott, J. A., Schiemer, F., Gnaiger, E. (1974). An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda. Mar. Biol. 26: 248–253

    Article  Google Scholar 

  • Zeuthen, E. (1950). Cartesian diver microrespirometer. Biol. Bull. mar. biol. Lab., Woods Hole 48(2): 139–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Please address all correspondence and requests for reprints to Professor J. Ott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiemer, F., Novak, R. & Ott, J. Metabolic studies on thiobiotic free-living nematodes and their symbiotic microorganisms. Mar. Biol. 106, 129–137 (1990). https://doi.org/10.1007/BF02114683

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02114683

Keywords

Navigation