Skip to main content
Log in

Cosmological PPN formalism and non-Machian gravitational theories

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

By turning to a differential formulation, the post-Newtonian description of metric gravitational theories (ppn formalism) has been extended to include cosmological boundary conditions. The dimensionless expansion parameter is the ratio distanceL (measured from the center of a selected space region) to Hubble distancec/H 0. The aim was to explore the significance and applicability of a Newtonian cosmology and to clarify to some extent its relation to general-relativistic cosmology. It turns out that up to post-Newtonian order two classes of gravitational theories can be distinguished, here called Machian and non-Machian. In a non-Machian theory like General Relativity the dynamics of cosmic objects within a space regionL« c/H 0. is described by the usualppn metric set up for the objects, without introducing time-dependent Newtonian potentials at the origin of theppn coordinate system. Such potentials of obviously cosmological origin seem to be required for the majority of (by our definition) Machian gravitational theories (including, e.g., Brans-Dicke). Conditions for a theory to be Machian or non-Machian are given in terms of algebraic relations for theppn parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brill, D. R. (1995). InMach's Principle: From Newton's Bucket to Quantum Gravity, J. Barbour, H. Pfister, eds. (Einstein Studies, vol.6, Birkhäuser, Boston).

    Google Scholar 

  2. Barbour, J. B. (1995). InMach's Principle: From Newton's Bucket to Quantum Gravity, J. Barbour, H. Pfister, eds. (Einstein Studies, vol.6, Birkhäuser, Boston).

    Google Scholar 

  3. Callan, C., Dicke, R. H., and Peebles, P. J. E. (1965).Amer. J. Phys. 33, 105.

    Google Scholar 

  4. Chandrasekhar, S., and Contopoulos, G. (1967).Proc. Roy. Soc. London A 298, 123.

    Google Scholar 

  5. Dautcourt, G. (1990).Acta Phys. Pol. B 21, 755.

    Google Scholar 

  6. Ehlers, J. (1981). InGrundlagenprobleme der Modernen Physik, J. Nitsch, J. Pfarr, E. W. Stachow, eds. (Bibliographisches Institut, Mannheim).

    Google Scholar 

  7. Heckmann, O., and Schücking, E. (1959).Handbuch der Physik 15, 489 (Springer-Verlag, Berlin).

    Google Scholar 

  8. Heckmann, O., and Schücking, E. (1955).Zeitschrift f. Astrophysik 38, 94.

    Google Scholar 

  9. Heckmann, O., and Schücking, E. (1956).Zeitschrift f. Astrophysik 40, 81.

    Google Scholar 

  10. Lottermoser, G. (1988). Ph.D. thesis, Munich.

  11. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).

    Google Scholar 

  12. Nordtvedt, K. (1993).Astrophys. J. 407, 5.

    Google Scholar 

  13. Trautman, A. (1966). InPerspectives in Geometry and Relativity, B. Hoffmann, ed. (Indiana University Press, Bloomington and London), p.413.

    Google Scholar 

  14. Will, C. M. (1993).Theory and Experiment in Gravitational Physics (revised ed., Cambridge University Press, Cambridge).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dautcourt, G. Cosmological PPN formalism and non-Machian gravitational theories. Gen Relat Gravit 28, 905–917 (1996). https://doi.org/10.1007/BF02113088

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02113088

Keywords

Navigation