Skip to main content
Log in

A new Pythagorean functional equation

  • Research Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Summary

The purpose of this paper is to solve the following Pythagorean functional equation:(e p(x,y) ) 2 ) = q(x,y) 2 + r(x, y) 2, where each ofp(x,y), q(x, y) andr(x, y) is a real-valued unknown harmonic function of the real variablesx, y on the wholexy-planeR 2.

The result is as follows.

Theorem. Suppose that each of p(x, y), q(x, y) and r(x, y) is a real-valued unknown harmonic function on R 2.The only systems of harmonic solutions of (1) are

$$\left\{ {\begin{array}{*{20}c} {p(x,y) = \log \left| {E(z)} \right|} \\ {q(x,y) = \operatorname{Re} (E(z))} \\ {r(x,y) = \operatorname{Im} (E(z))} \\ \end{array} } \right.$$
((i))

and

$$\left\{ {\begin{array}{*{20}c} {p(x,y) = \log \left| {E(z)} \right|} \\ {q(x,y) = \operatorname{Re} (E(z)){\mathbf{ }},} \\ {r(x,y) = - \operatorname{Im} (E(z))} \\ \end{array} } \right.$$
((ii))

In other words, there exists an entire function E(z) such that p(x, y) = log|E(z)|, q(x, y) = Re(E(z))and either r(x, y) = Im(E(z))or r(x, y) = −Im(E(z))and p(x, y), q(x, y) and r(x, y) satisfy (1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.,Lectures on functional equations and their applications. Academic Press, New York—London, 1966.

    Google Scholar 

  2. Aczél, J. andDhombres, J.,Functional equations in several variables. Cambridge University Press, Cambridge—New York—New Rochelle—Melbourne—Sydney, 1989.

    Google Scholar 

  3. Aczél, J. andHaruki, H.,Commentary to Einar Hille's collected works. The MIT Press, Cambridge, MA—London (edited by R. R. Kallman) (1975), pp. 651–658.

    Google Scholar 

  4. Ahlfors, L. V.,Complex analysis, 2nd ed. McGraw-Hill, New York, 1966.

    Google Scholar 

  5. Burckel, R. B.,An introduction to classical complex analysis. Vol. 1. Academic Press, New York—San Francisco, 1979.

    Google Scholar 

  6. Ganapathy, I. V.,On certain functional equations. J. Indian Math. Soc.3 (1939), 312–315.

    Google Scholar 

  7. Haruki, H.,Studies on certain functional equations from the standpoint of analytic function theory. Sci. Rep. Osaka Univ.14 (1965), 1–40.

    Google Scholar 

  8. Haruki, H.,An integral inequality in analytic function theory. Enseign. Math.19 (1973), 309–312.

    Google Scholar 

  9. Haruki, H.,A functional equation arising from the Joukowski transformation. Ann. Polon. Math.45 (1985), 185–191.

    Google Scholar 

  10. Haruki, H.,On a functional equation of Pexider type. Aequationes Math.36 (1988), 1–19.

    Article  Google Scholar 

  11. Heins, M.,Complex function theory. Academic Press, New York—London, 1968.

    Google Scholar 

  12. Hille, E.,A Pythagorean functional equation. Ann. of Math.24 (1923), 175–180.

    Google Scholar 

  13. Hille, E.,A class of functional equations. Ann. of Math.29 (1928), 215–222.

    MathSciNet  Google Scholar 

  14. Nehari, Z.,Introduction to complex analysis. Allyn and Bacon, Boston, 1969.

    Google Scholar 

  15. Nevanlinna, R. andPaatero, V.,Introduction to complex analysis. Addison-Wesley, Reading, MA, 1964.

    Google Scholar 

  16. Schmidt, H.,Lösung der Aufgabe 103. Jahresber. Deutsch. Math.-Verein.43 (1934), 6–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haruki, H. A new Pythagorean functional equation. Aeq. Math. 40, 271–280 (1990). https://doi.org/10.1007/BF02112300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02112300

AMS (1980) subject classification

Navigation