Skip to main content
Log in

Functional reconstitution of photosystem I reaction center from cyanobacteriumSynechocystis sp PCC6803 into liposomes using a new reconstitution procedure

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Photosystem I reaction center from the cyanobacteriumSynechocystis sp PCC6803 was reconstituted into phosphatidylcholine/phosphatidic acid liposomes. Liposomes prepared by reversephase evaporation were treated with various amounts of different detergents and protein incorporation was analyzed at each step of the solubilization process. After detergent removal the activities of the resulting proteoliposomes were measured. The most efficient reconstitution was obtained by insertion of the protein complex into preformed liposomes destabilized by saturating amounts of octylglucoside. In the presence of N-methylphenazonium methosulfate and ascorbic acid, liposomes containing the reaction center catalyzed a light-dependent net H+ uptake as measured by the 9-aminoacridine fluorescence quenching and the pH meter. An important benefit of the new reconstitution procedure is that it produces a homogeneous population of large-size proteoliposomes with a low ionic permeability and with a majority inwardly directed H+ transport activity. In optimal conditions, a light-induced δpH of about 1.8 units could be sustained at 20‡C in the presence of valinomycin. In the absence of valinomycin, a “back-pressure” effect of an electrical transmembrane potential decreased both the rate and the extent of the H+ transport. The reaction center was also co-reconstituted with F0F1 H+-ATPases from chloroplasts and from the thermophilic bacterium, PS3. The coreconstituted system was shown to catalyze a light-dependent phosphorylation which could only be measured in the presence of a high concentration of PSI (low lipid/PSI ratios) while no δpH could be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon, D. I. (1949).Plant Physiol. 24, 1–15.

    Google Scholar 

  • Boeckema, E. J., Dekker, J. P., Rögner, M., Saenger, W., Witt, I., and Witt., H. T. (1989).Biochim. Biophys. Acta 974, 81–87.

    Google Scholar 

  • Casey, R. P. (1984).Biochim. Biophys. Acta 768, 319–347.

    PubMed  Google Scholar 

  • Christiansen, K., and Carlsen, J. (1985).Biochim. Biophys. Acta 815, 215–222.

    PubMed  Google Scholar 

  • Deamer, D. W., Prince, R. C., and Crofts, A. R. (1972).Biochim. Biophys. Acta 274, 323–335.

    PubMed  Google Scholar 

  • Evans, C. A., and Bolton, J. R. (1979).Photochem. Photobiol. 30, 697–707.

    Google Scholar 

  • Eytan, G. D. (1982).Biochim. Biophys. Acta 694, 185–202.

    PubMed  Google Scholar 

  • Fiolet, J. W. T., Bakker, E. P., and Van Dam, K. (1974).Biochim. Biophys. Acta 368, 432–445.

    PubMed  Google Scholar 

  • Ford, R. C., and Holzenberg, A. (1988).EMBO J. 6, 1581–1586.

    Google Scholar 

  • Fromme, P., Boekema, E. J., and Gräber, P. (1987).Naturforsch. Z. 42, 1239–1245.

    Google Scholar 

  • Gabellini, N., Gao, Z., Oesterhelt, D., Venturoli, G., and Melandri, B. A. (1989).Biochim. Biophys. Acta 974, 202–210.

    Google Scholar 

  • Graf, M., Bokranz, M., Böcher, R., Friedl, P., and Kröger, A. (1985).FEBS Lett. 184, 100–103.

    Google Scholar 

  • Gromet-Elhanan, Z., and Leiser, M. (1975).J. Biol. Chem. 250, 90–93.

    PubMed  Google Scholar 

  • Hauska, G., Samoray, G., Orlich, G., and Nelson, N. (1980).Eur. J. Biochem. 111, 535–543.

    PubMed  Google Scholar 

  • Helenius, A., Sarvas, M., and Simons, K. (1981).Eur. J. Biochem. 116, 27–35.

    PubMed  Google Scholar 

  • Hellingwerf, K. F., Arents, J. C., Scholte, B. J., and Westerhoff, H. V. (1979).Biochim. Biophys. Acta 547, 561–582.

    PubMed  Google Scholar 

  • Hinkle, P. C. (1973).Fed. Proc. 32, 1988–1992.

    PubMed  Google Scholar 

  • Holloway, P. W. (1973).Anal. Biochem. 53, 304–308.

    PubMed  Google Scholar 

  • Krenn, B. E., Koppenaal, F., Van Walraven, S., Krab, K., and Kraayenhof, R. (1993).Biochim. Biophys. Acta 1140, 27–281.

    Google Scholar 

  • Kuprinsky, J., and Hammes, G. G. (1986).Proc. Natl. Acad. Sci. USA 83, 4233–4237.

    PubMed  Google Scholar 

  • Lévy, D., Bluzat, A., Seigneuret, M., and Rigaud, J. L. (1990).Biochim. Biophys. Acta 1025, 179–190.

    PubMed  Google Scholar 

  • Lévy, D., Gulik, A., Bluzat, A., and Rigaud, J. L. (1992).Biochim. Biophys. Acta 1107, 283–298.

    PubMed  Google Scholar 

  • Mitchell, P. (1966).Biol. Rev. 41, 445–502.

    PubMed  Google Scholar 

  • Orlich, G., and Hauska, G. (1980).Eur. J. Biochem. 111, 525–533.

    PubMed  Google Scholar 

  • Paternostre, M. T., Roux, M., and Rigaud, J. L. (1988).Biochemistry 27, 2668–2677.

    PubMed  Google Scholar 

  • Pitard, B., Richard, P., Duñach, M., Girault, G., and Rigaud, J. L. (1996a).Eur. J. Biochem. 235, 769–778.

    PubMed  Google Scholar 

  • Pitard, B., Richard, P., Duñach, M., and Rigaud, J. L. (1996b).Eur. J. Biochem. 235, 779–788.

    PubMed  Google Scholar 

  • Racker, E. (1972).J. Biol. Chem. 247, 8198–8200.

    PubMed  Google Scholar 

  • Richard, P., Rigaud, J. L., and Gräber, P. (1990).Eur. J. Biochem. 193, 921–925.

    PubMed  Google Scholar 

  • Richard, P., Pitard, B., and Rigaud, J. L. (1995).J. Biol. Chem. 270, 21571–21578.

    PubMed  Google Scholar 

  • Rigaud, J. L., Bluzat, A., and Büschlen, S. (1983).Biochem. Biophys. Res. Commun. 111, 373–382.

    PubMed  Google Scholar 

  • Rigaud, J. L., Paternostre, M. T., and Bluzat, A. (1988).Biochemistry 27, 2677–2688.

    PubMed  Google Scholar 

  • Rigaud, J. L., Pitard, B., and Levy, D. (1995).Biochim. Biophys. Acta 1231, 223–246.

    PubMed  Google Scholar 

  • Rögner, M., Dixon, P. J., and Diner, B. A. (1990a).J. Biol. Chem. 265, 6189–6196.

    PubMed  Google Scholar 

  • Rögner, M., Muhlenhoff, U., Boeckema, E. J., and Witt, H. T. (1990b).Biochim. Biophys. Acta 1015, 415–424.

    Google Scholar 

  • Seigneuret, M., and Rigaud, J. L. (1986a).Biochemistry 25, 6716–6722.

    Google Scholar 

  • Seigneuret, M., and Rigaud, J. L. (1986b).Biochemistry 25, 6723–6730.

    Google Scholar 

  • Sétif, P. Q., and Bottin, H. (1995).Biochemistry 34, 9059–9070.

    PubMed  Google Scholar 

  • Singleton, W. S., Gray, M. S., Brown, M. L., and White, J. L. (1965).J. Am. Oil Chem. Soc. 42, 53–56.

    PubMed  Google Scholar 

  • Szoka, F., Olson, F., Heath, T., Vail, W., Mayew, E., and Papahadjopoulus, D. (1980).Biochim. Biophys. Acta 601, 559–571.

    PubMed  Google Scholar 

  • Van der Bend, R. L., Comelissen, J. B., Berden, J. A., and Van Dam, K. (1984).Biochim. Biophys. Acta 767, 87–101.

    Google Scholar 

  • Van Walraven, H. S. (1990).Mol. Cell. Biol. 8, 23–34.

    Google Scholar 

  • Westerhoff, H. V., and Daucshazy, Z. (1984).Trends Biochem. Sci. 8, 112–117.

    Google Scholar 

  • Yoshida, M., Sone, M., Hirata, M., and Kagawa, W. (1975).Biochem. Biophys. Res. Commun. 67, 1295–1300.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cladera, J., Rigaud, J.L., Bottin, H. et al. Functional reconstitution of photosystem I reaction center from cyanobacteriumSynechocystis sp PCC6803 into liposomes using a new reconstitution procedure. J Bioenerg Biomembr 28, 503–515 (1996). https://doi.org/10.1007/BF02110440

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110440

Key words

Navigation