Skip to main content
Log in

Drug-stimulated ATPase activity of the human P-glycoprotein

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The human multidrug resistance protein, or P-glycoprotein (Pgp), exhibits a high-capacity drug-dependent ATP hydrolytic activity that is a direct reflection of its drug transport capability. This activity is readily measured in membranes isolated from cultured insect cells infected with a baculovirus carrying the humanmdrl cDNA. The drug-stimulated ATPase activity is a useful alternative to conventional screening systems for identifying high-affinity drug substrates of the Pgp with potential clinical value as chemosensitizers for tumor cells that have become drug resistant. Using this assay system, a variety of drugs have been directly shown to interact with the Pgp. Many of the drugs stimulate the Pgp ATPase activity, but certain drugs bind tightly to the drug-binding site of the Pgp without eliciting ATP hydrolysis. Either class of drugs may be useful as chemosensitizing agents. The baculovirus/insect cell Pgp ATPase assay system may also facilitate future studies of the molecular structure and mechanism of the Pgp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, S.-I., Cornwell, M. M., Kuwano, M., Pastan, I., and Gottesman, M. M. (1988).Mol. Pharmacol. 33, 144–147.

    PubMed  Google Scholar 

  • Al-Shawi, M. K., and Senior, A. E. (1993).J. Biol. Chem. 268, 4197–4206.

    Google Scholar 

  • Ambudkar, S. V., Lelong, I. H., Zhang, J., Cardarelli, C. O., Gottesman, M. M., and Pastan, I. (1992).Proc. Natl. Acad. Sci. USA 89, 8472–8476.

    PubMed  Google Scholar 

  • Barnes, D. A., Foote, S. J., Galatis, D., Kemp, D. J., and Cowman, A. F. (1992).EMBO J. 11, 3067–3075.

    PubMed  Google Scholar 

  • Bradley, G., Juranka, P. F., and Ling, V. (1988).Biochim. Biophys. Acta 948, 87–128.

    PubMed  Google Scholar 

  • Choi, K., Chen, C.-J., Kriegler, M., and Roninson, I. B. (1988).Cell 53, 519–529.

    PubMed  Google Scholar 

  • Cole, S. P. C., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., Stewart, A. J., Kurz, E. U., Duncan, A. M. V., and Deeley, R. G. (1992).Science 258, 1650–1654.

    PubMed  Google Scholar 

  • Cornwell, M. M., Safa, A. R., Felsted, R. L., Gottesman, M. M., and Pastan, I. (1986).Proc. Natl. Acad. Sci. USA 83, 3847–3850.

    PubMed  Google Scholar 

  • Cornwell, M. M., Pastan, I., and Gottesman, M. M. (1987).J. Biol. Chem. 262, 2166–2170.

    Google Scholar 

  • Cowman, A. F., Karcz, S., Galatis, D., and Culvenor, J. G. (1991).J. Cell Biol. 113, 1033–1042.

    PubMed  Google Scholar 

  • Croop, J. M. (1993).Cytotechnology 12, 1–32.

    PubMed  Google Scholar 

  • Deverson, E. V., Gow, I. R., Coadwell, W. J., Monaco, J. J., Butcher, G. W., and Howard, J. C. (1990).Nature (London) 348, 738–741.

    Google Scholar 

  • Doige, C. A., Yu, X., and Sharom, F. J. (1992).Biochim. Biophys. Acta 1109, 149–160.

    PubMed  Google Scholar 

  • Endicott, J. A., and Ling, V. (1989).Annu. Rev. Biochem. 58, 137–171.

    PubMed  Google Scholar 

  • Foote, S. J., Kyle, D. E., Martin, R. K., Oduola, A. M. J., Forsyth, K., Kemp, D. J., and Cowman, A. F. (1990).Nature (London) 345, 255–258.

    Google Scholar 

  • Germann, U. A., Willingham, M. C., Pastan, I., and Gottesman, M. M. (1990).Biochemistry 29, 2295–2303.

    PubMed  Google Scholar 

  • Gottesman, M. M., and Pastan, I. (1988).J. Biol. Chem. 263, 12163–12166.

    Google Scholar 

  • Hamada, H., and Tsuruo, T. (1988a).J. Biol. Chem. 263, 1454–1458.

    Google Scholar 

  • Hamada, H., and Tsuruo, T. (1988b).Cancer Res. 48, 4926–4932.

    PubMed  Google Scholar 

  • Homolya, L., Hollo, Z., Germann, U. A., Pastan, I., Gottesman, M. M., and Sarkadi, B. (1993).J. Biol. Chem. 268, 21493–21496.

    Google Scholar 

  • Horio, M., Gottesman, M. M., and Pastan, I. (1988).Proc. Natl. Acad. Sci. USA 85, 3580–3584.

    PubMed  Google Scholar 

  • Horio, M., Lovelace, E., Pastan, I., and Gottesman, M. M. (1991).Biochim. Biophys. Acta 1061, 106–110.

    PubMed  Google Scholar 

  • Jaffrezou, J.-P., Herbert, J.-M., Levade, T., Gau, M.-N., Chatelain, P., and Laurent, G. (1991).J. Biol. Chem. 266, 19858–19864.

    Google Scholar 

  • Juranka, P. F., Zastawny, R. L., and Ling, V. (1989).FASEB J. 3, 2583–2592.

    PubMed  Google Scholar 

  • Kamimoto, Y., Gatmaitan, A., Hsu, J., and Arias, I. M. (1989).J. Biol. Chem. 264, 11693–11698.

    Google Scholar 

  • Krogstad, D. J., Gluzman, I. Y., Herwaldt, B. L., Schlesinger, P. H., and Wellems, T. E. (1992).Biochem. Pharmacol. 43, 57–62.

    PubMed  Google Scholar 

  • Miller, T. P., Grogan, T. M., Dalton, W. S., Spier, C. M., Scheper, R. J., and Salmon, S. E. (1991).J. Clin. Oncol. 9, 17–24.

    PubMed  Google Scholar 

  • Monaco, J. J., Cho, S., and Attaya, M. (1990).Science 250, 1723–1726.

    PubMed  Google Scholar 

  • Naito, M., Hamada, H., and Tsuruo, T. (1988).J. Biol. Chem. 263, 11887–11891.

    Google Scholar 

  • Pastan, L., Willingham, M. C., and Gottesman, M. (1991).FASEB J. 5, 2523–2528.

    PubMed  Google Scholar 

  • Pedersen, P. L., and Carafoli, E. (1987).Trends Biochem. Sci. 12, 146–150.

    Google Scholar 

  • Rao, U. S., and Scarborough, G. A. (1994).Mol. Pharm. 45, 773–776.

    Google Scholar 

  • Rao, U. S., Fine, R. L., and Scarborough, G. A. (1994).Biochem. Pharmacol. 48, 287–292.

    PubMed  Google Scholar 

  • Riordan, J. R., Rommens, J. M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N., Chou, J.-L., Drumm, M. L., Ianuzzi, M. C., Collins, F. S., and Tsui, L.-C. (1989).Science 245, 1066–1073.

    PubMed  Google Scholar 

  • Sarkadi, B., Bauzon, D., Huckle, W. R., Earp, H. S., Berry, A., Suchindran, H., Price, E. M., Olsen, J.C., Boucher, R. C., and Scarborough, G. A. (1992a).J. Biol. Chem. 267, 2087–2095.

    Google Scholar 

  • Sarkadi, B., Price, E. M., Boucher, R. C., Germann, U. A., and Scarborough, G. A. (1992b).J. Biol. Chem. 267, 4854–4858.

    Google Scholar 

  • Scarborough, G. A. (1992). InMolecular Aspects of Membrane Proteins (de Pont, J. J. H. H. M., ed.), Elsevier Science Publishers B. V., Amsterdam, pp. 117–134.

    Google Scholar 

  • Shapiro, A. B., and Ling, V. (1994).J. Biol. Chem. 269, 3745–3754.

    Google Scholar 

  • Spies, T., Bresnahan, M., Bahram, S., Arnold, D., Blanck, G., Mellins, E., Pious, D., and DeMars, R. (1990).Nature (London) 348, 744–747.

    Google Scholar 

  • Trowsdale, J., Hanson, I., Mockridge, I., Beck, S., Townsend, A., and Kelly, A. (1990).Nature (London) 348, 741–744.

    Google Scholar 

  • Zhang, L., Sachs, C. W., Fine, R. L., and Casey, P. J. (1994).J. Biol. Chem. 269, 15973–15976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarborough, G.A. Drug-stimulated ATPase activity of the human P-glycoprotein. J Bioenerg Biomembr 27, 37–41 (1995). https://doi.org/10.1007/BF02110329

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110329

Key words

Navigation