Skip to main content
Log in

Purification and reconstitution of functional human P-glycoprotein

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The overexpression of the P-glycoprotein, theMDR1 gene product, has been linked to the development of resistance to multiple cytotoxic natural product anticancer drugs in certain cancers and cell lines derived from tumors. P-glycoprotein, a member of the ATP-binding cassette (ABC) superfamily of transporters, is believed to function as an ATP-dependent drug efflux pump with broad specificity for chemically unrelated hydrophobic compounds. We review here recent studies on the purification and reconstitution of P-glycoprotein to elucidate the mechanism of drug transport. P-glycoprotein from the human carcinoma multidrug resistant cell line, KB-V1, was purified by sequential chromatography on anion exchange followed by a lectin (wheat germ agglutinin) column. Proteoliposomes reconstituted with pure protein exhibited high levels of drug-stimulated ATPase activity as well as ATP-dependent [3H]vinblastine accumulation. Both the ATPase and vinblastine transport activities of the reconstituted P-glycoprotein were inhibited by vanadate. In addition, the vinblastine transport was inhibited by verapamil and daunorubicin. These studies provide strong evidence that the human P-glycoprotein functions as an ATP-dependent drug transporter. The development of the reconstitution system and the availability of recombinant protein in large amounts due to recent advances in overexpression of P-glycoprotein in a heterologous expression system should facilitate a better understanding of the function of this novel protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, E. H., Prat, A. G., Gerweck, L., Seneveratne, T., Arceci, R. J., Kramer, R., Guidotti, G., and Cantiello, H. F. (1993).Proc. Natl. Acad. Sci. USA 90, 312–316.

    PubMed  Google Scholar 

  • Al-Shawi, M. K., and Senior, A. E. (1993).J. Biol. Chem. 268, 4197–4206.

    Google Scholar 

  • Al-Shawi, M. K., Urbatsch, I. L., Senior, A. E. (1994).J. Biol. Chem. 269, 8986–8992.

    Google Scholar 

  • Ambudkar, S. V., and Maloney, P. C. (1986a).J. Biol. Chem. 261, 10079–10086.

    Google Scholar 

  • Ambudkar, S. V., and Maloney, P. C. (1986b).Methods Enzymol.125, 558–563.

    PubMed  Google Scholar 

  • Ambudkar, S. V., Lynn, A. R., Maloney, P. C. and Rosen, B. P. (1986).J. Biol. Chem. 261, 15596–15600.

    Google Scholar 

  • Ambudkar, S. V., Anantharam, V., and Maloney, P. C. (1990).J. Biol. Chem. 265, 12287–12292.

    Google Scholar 

  • Ambudkar, S. V., Lelong, I. H., Zhang, J., Cardarelli, C. O., Gottesman, M. M., and Pastan, I. (1992).Proc. Natl. Acad. Sci. USA 89, 8472–8476.

    PubMed  Google Scholar 

  • Ambudkar, S. V., Pastan, I., and Gottesman, M. M. (1995). InDrug Transport in Antimicrobial and Anticancer Chemotherapy: Cellular and Biochemical Aspects of Multidrug Resistance (Georgapapadakou, N. H., ed.). Marcel Dekker, New York, 525–547.

    Google Scholar 

  • Bear, C. E., Li, C., Kartner, N., Bridges, R. J., Jensen, T. J., Ramjeesing, M., and Riordan, J. R. (1992).Cell 68, 809–818.

    PubMed  Google Scholar 

  • Bishop, L., Agbayani, R., Ambudkar, S. V., Maloney, P. C., and Ames, G. F-L. (1989).Proc. Natl. Acad. Sci. USA 86, 6953–6957.

    PubMed  Google Scholar 

  • Chen, C-J., Chin, C. E., Ueda, K., Clark, D. P., Pastan, I., Gottesman, M. M., and Roninson, I. B. (1986).Cell 47, 381–389.

    PubMed  Google Scholar 

  • Chen, C. J., Clark, D., Ueda, K., Pastan, I., Gottesman, M. M., and Roninson, I. B. (1990).J. Biol. Chem. 265, 506–514.

    Google Scholar 

  • Childs, S., and Ling, V. (1994). InImportant Advances in Oncology: The MDR Superfamily of Genes and its Biological Implications (DeVita, V. T., Hellman, S., and Rosenberg, S. A., eds.), Lippincott, Philadelphia, pp. 21–36.

    Google Scholar 

  • Cole, S. P. C., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., Stewart, A. J., Kurz, E. U., Duncan, A. M. V., and Deeley, R. G. (1992).Science.258, 1650–1654.

    PubMed  Google Scholar 

  • Dano, K. (1973).Biochim. Biophys. Acta,323, 466–483.

    PubMed  Google Scholar 

  • Davidson, A. L., and Nikaido, H. (1990).J. Biol. Chem. 265, 4254–4260.

    Google Scholar 

  • Davidson, A. L., Shuman, H. A., and Nikaido, H. (1992).Proc. Natl. Acad. Sci. USA 89, 2360–2364.

    PubMed  Google Scholar 

  • Decottignies, A., Kolackowski, M., Balzi, E., and Goffeau, A. (1994).J. Biol. Chem. 269, 12797–12803.

    Google Scholar 

  • Dhir, R., and Gros, P. (1992).Biochemistry 31, 6103–6110.

    PubMed  Google Scholar 

  • Doige, C. A., and Ames, G. F. L. (1993).Annu. Rev. Microbiol. 47, 291–319.

    PubMed  Google Scholar 

  • Doige, C. A., Yu, X. H., and Sharom, F. J. (1992).Biochim. Biophys. Acta 1109, 149–160.

    PubMed  Google Scholar 

  • D'Souza, P., Ambudkar, S. V., August, J. T., and Maloney, P. C. (1987).Proc. Natl. Acad. Sci. USA 84, 6980–6984.

    PubMed  Google Scholar 

  • Endicott, J. A., and Ling, V. (1989).Annu. Rev. Biochem. 58, 137–171.

    PubMed  Google Scholar 

  • Eytan, G. D., Borgnia, M. J., Regev, R., and Assaraf, Y. G. (1994).J. Biol. Chem. 269, 26058–26565.

    Google Scholar 

  • Fojo, A. T., Akiyama, S., Gottesman, M. M., and Pastan, I. (1985).Cancer Res. 45, 3002–3007.

    PubMed  Google Scholar 

  • Foote, S. J., Thompson, J. K., Conman, A. F., and Kemp, D. J. (1989).Cell 57, 921–930.

    PubMed  Google Scholar 

  • Gartner, J., Moser, H., and Valle, D. (1992).Nature Genetics 1, 16–23.

    PubMed  Google Scholar 

  • Germann, U. A., Willingham, M. C., Pastan, I., and, Gottesman, M. M. (1990).Biochemistry 29, 2295–2303.

    PubMed  Google Scholar 

  • Gill, D. R., Hyde, S. C., Higgins, C. F., Valverde, M. A., Mintenig, G. M., and SepÚlveda, F. V. (1992).Cell 71, 23–32.

    PubMed  Google Scholar 

  • Glisson, B., Gupta, R., Smallwood-Kentro, S., and Ross, W. (1986).Cancer Res. 46, 1934–1938.

    PubMed  Google Scholar 

  • Gottesman, M. M., and Pastan, I. (1988).J. Biol. Chem. 263, 12163–12166.

    Google Scholar 

  • Gottesman, M. M., and Pastan, I. (1993).Annu. Rev. Biochem. 62, 385–427.

    PubMed  Google Scholar 

  • Gros, P., Ben Neriah, Y., Croop, J., and Housman, D. E. (1986).Nature (London) 323, 728–731.

    Google Scholar 

  • Gros, P., Croop, J., and Housman, D. E. (1986).Cell 47, 371–380.

    PubMed  Google Scholar 

  • Higgins, C. F. (1992).Annu. Rev. Cell Biol. 8, 67–113.

    PubMed  Google Scholar 

  • Higgins, C. F., and Gottesman, M. M. (1992).Trends Biochem. Sci. 17, 18–21.

    PubMed  Google Scholar 

  • Horio, M., Gottesman, M. M., and Pastan, I. (1988).Proc. Natl. Acad. Sci. USA 85, 3580–3584.

    PubMed  Google Scholar 

  • Hyde, S. C., Emsley, P., Hartshorn, M. J., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Gill, D. R., Hubbard, R. E., and Higgins, C. F. (1990).Nature (London) 346, 362–365.

    Google Scholar 

  • Juliano, R. L., and Ling, V. (1976).Biochim. Biophys. Acta 455, 152–162.

    PubMed  Google Scholar 

  • Lockwich, T., Ambudkar, S. V., Chauthaiwale, J., and Ambudkar, I. S. (1995).Biophys. J.,68, A387.

    Google Scholar 

  • Luz, J. G., Wei, L-Y., Basu, S., and Roepe, P. D. (1994).Biochemistry 33, 7239–7249.

    PubMed  Google Scholar 

  • Maloney, P. C. and Ambudkar, S. V. (1989).Arch. Biochem. Biophys. 269, 1–10.

    PubMed  Google Scholar 

  • McGrath, J. P., and Varshavsky, A. (1989).Nature (London) 340, 400–404.

    Google Scholar 

  • Monaco, J. J., Cho, S., and Attaya, M. (1990).Science 250, 1723–1726.

    PubMed  Google Scholar 

  • Moscow, J. A., and Cowan, K. H. (1988).J. Natl. Cancer Inst. 80, 14–20.

    PubMed  Google Scholar 

  • Mosser, J., Douar, A-M., Sarde, C-O., Kioschis, P., Feil, R., Moser, H., Poustka, A-M., Mandel, J-L., Aubourg, P. (1993).Nature (London) 361, 726–730.

    Google Scholar 

  • Newman, M. J., and Wilson, T. H. (1980).J. Biol. Chem. 255, 10583–10586.

    Google Scholar 

  • Ng, W. F., Sarangi, F., Zastawny, R. L., Veinot-Drebot, L. and Ling, V. (1989).Mol. Cell. Biol. 9, 1224–1232.

    PubMed  Google Scholar 

  • Pedersen, P. L., and Amzel, L. M. (1993).J. Biol. Chem. 268, 9937–9940.

    PubMed  Google Scholar 

  • Racker, E., Violand, B., O'Neil, S., Alfonzo, M., and Telford, J. (1979).Arch. Biochem. Biophys. 198, 470–477.

    PubMed  Google Scholar 

  • Rasola, A., Galietta, L. J. V., Gruenert, D. C., Romeo, G. (1994).J. Biol. Chem. 269, 1432–1436.

    Google Scholar 

  • Riordan, J. R. (1993).Annu. Rev. Physiol. 55, 609–630.

    PubMed  Google Scholar 

  • Riordan, J. R., Rommens, J. M., Kerem, B. S., Alon, N., Rozmahel, R., Grzelezak, A., Aielenski, J., Lok, S., Plavsic, N., Chou, J-I., Drumm, M. L., Iannuzzi, M. C., Collins, F. S., and Tsui, L-C. (1989).Science 245, 1066–1073.

    PubMed  Google Scholar 

  • Roepe, P. D., Wei, L. Y., Cruz, J., and Carlson, D. (1993).Biochemistry 32, 11042–11056.

    PubMed  Google Scholar 

  • Roninson, I. B. (1991).Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells, Plenum Press, New York.

    Google Scholar 

  • Ruan, Z-S., Vellareddy, A., Crawford, I. T., Ambudkar, S. V., Rhee, S. Y., Allison, M. J., and Maloney, P. C. (1992).J. Biol. Chem. 267, 10537–10543.

    Google Scholar 

  • Ruetz, S., and Gros, P. (1994).Cell 77, 1071–1081.

    PubMed  Google Scholar 

  • Sarkadi, B., Price, E. M., Boucher, R. C., Germann, U. A., and Scarborough, G. A. (1992).J. Biol. Chem. 267, 4854–4858.

    Google Scholar 

  • Shapiro, A., and Ling, V. (1994).J. Biol. Chem. 269, 3745–3754.

    Google Scholar 

  • Sharom, F. J., Yu, X., and Doige, C. A. (1993).J. Biol. Chem. 268, 24197–24202.

    Google Scholar 

  • Shyamala, V., Baichwald, V., Gant, T. W., Beall, E., and Ames, G. F-L. (1991).J. Biol. Chem. 266, 18714–18719.

    Google Scholar 

  • Smit, J. J. M., Schinkel, A. H., OudeElferink, R. P. J., Groen, A. K., Wagenaar, E., van Deemter, L., Mol, C. A. M., Ottenhoff, R., van der Lugt, N. M. T., van Roon, M. A., van der Valk, M. A., Offerhaus, G. J. A., Berns, A. J. M., and Borst, P. (1993).Cell 75, 451–462.

    PubMed  Google Scholar 

  • Trowsdale, J., Hanson, I., Mockridge, I., Beck, S., Townsend, A., and Kelly, A. (1990).Nature (London) 348, 741–743.

    Google Scholar 

  • Ueda, K., Cornwell, M. M., Gottesman, M. M., Pastan, I., Roninson, I. B., Ling, V., and Riordan, J. R. (1986).Biochem. Biophys. Res. Commun. 141, 956–962.

    Google Scholar 

  • Ueda, K., Cardarelli, C., Gottesman, M. M., and Pastan, I. (1987).Proc. Natl. Acad. Sci. USA 84, 3004–3008.

    PubMed  Google Scholar 

  • Urbatsch, I. L., Al-Shawi, M. K., and Senior, A. E. (1994).Biochemistry 33, 7069–7076.

    PubMed  Google Scholar 

  • Valverde, M. A., Diáz, M., SepÚlveda, F. V., Gill, D. R., Hyde, S. C., and Higgins, C. F. (1992).Nature (London) 355, 830–833.

    Google Scholar 

  • Wang, X. Y., Wall, D.M., Parkin, J. D., Zalcberg, J. R., and Kemm, R. E. (1994).Clin. Exp. Pharmacol. Physiol. 21, 101–108.

    PubMed  Google Scholar 

  • Willingham, M. C., Cornwell, M. M., Cardarelli, C. O., Gottesman, M. M., and Pastan, I. (1986).Cancer Res..46, 5941–5946.

    PubMed  Google Scholar 

  • Zeidel, M. L., Ambudkar, S. V., Smith, B. L., and Argre, P. (1992).Biochemistry 31, 7436–7440.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambudkar, S.V. Purification and reconstitution of functional human P-glycoprotein. J Bioenerg Biomembr 27, 23–29 (1995). https://doi.org/10.1007/BF02110327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110327

Key words

Navigation