Skip to main content
Log in

Calcium-alkalinity relationship in the North Pacific

  • Published:
Journal of the Oceanographical Society of Japan Aims and scope Submit manuscript

Abstract

The dissolution of calcium carbonate in deep ocean water causes variation in calcium concentration (ΔCa) and alkalinity (ΔTA) in the ratio of one to two. The decomposition of organic matter generates nitric acid, phosphoric acid and sulfuric acid. A proton flux which is derived from this process also changes alkalinity. Using the variation in nitrate concentration (ΔNO3) as an index of the proton flux, the relationship betweenΔCa,ΔTA andΔNO3 is expressed asΔCa=0.5ΔTA+0.63ΔNO3 The values of ΔCa obtained from direct measurements in the North Pacific are in good agreement with the values estimated from this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almgren, T., D. Dyrssen andM. Strandberg (1977): Computerized high-precision titrations of some major constituents of seawater on board the R. V.Dmitry Mendeleev. Deep-Sea Res.,24, 345–364.

    Google Scholar 

  • Billings, G. K., O. P. Bricker, F. T. Mackenzie andA. L. Brooks (1969): Temporal variations of alkaline earth element/chlorinity ratios in the Sargasso Sea. Earth Planet. Sci. Lett.,6, 231.

    Google Scholar 

  • Brewer, P. G., G. T. F. Wong, M. P. Bacon andD. W. Spencer (1975): An oceanic calcium problem? Earth Planet. Sci. Lett.,26, 81–87.

    Google Scholar 

  • Culkin, F. andR. A. Cox (1966): Sodium, potassium, magnesium, calcium and strontium in sea water. Deep-Sea Res.,13, 789–804.

    Google Scholar 

  • Chen, C.-T.A. (1978): Decomposition of calcium carbonate and organic carbon in the deep oceans. Science,201, 735–736.

    Google Scholar 

  • Deuser, W. G. (1970): Carbon-13 in Black Sea waters and implications for the origin of hydrogen sulfide. Science,168, 1575–1577.

    Google Scholar 

  • Edmond, J. M. (1970): High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration. Deep-Sea Res.,17, 737–750.

    Google Scholar 

  • Horibe, Y., K. Endo andH. Tsubota (1974): Calcium in the South Pacific, and its correlation with carbonate alkalinity. Earth Planet. Sci. Lett.,23, 136–140.

    Google Scholar 

  • Kanamori, S. andH. Ikegami (1980): Computer-processed potentiometric titration for the determination of calcium and magnesium in sea water. J. Oceanogr. Soc. Japan,36, 177–184.

    Google Scholar 

  • Kester, D.R. andR.M. Pytkowicz (1967): Determination of the apparent dissociation constants of phosphoric acid in seawater. Limnol. Oceanogr.,12, 243–252.

    Google Scholar 

  • Lyman, J. (1957): Buffer mechanism of sea water. Ph. D. Thesis, University of California, Los Angels, 196 pp.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum andF. A. Richards (1963): The influence of organisms on the composition of sea water.In, The Sea, Vol. 2, ed. byM. N. Hill, Interscience, New York, pp. 26–77.

    Google Scholar 

  • Shiller, A. M. andJ. M. Gieskes (1980): Processes affecting the oceanic distribution of dissolved calcium and alkalinity. J. Geophys. Res.,85, 2719–2727.

    Google Scholar 

  • Tsunogai, S., H. Yamahata, S. Kudo andO. Saito (1973): Calcium in the Pacific Ocean. Deep-Sea Res.,20, 717–726.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanamori, S., Ikegami, H. Calcium-alkalinity relationship in the North Pacific. Journal of the Oceanographical Society of Japan 38, 57–62 (1982). https://doi.org/10.1007/BF02110291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110291

Keywords

Navigation