Skip to main content
Log in

Metabolic regulation: A control analytic perspective

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A possible basis for a quantitative theory of metabolic regulation is outlined. Regulation is defined here as the alteration of reaction properties to augment or counteract the mass-action trend in a network reactions. In living systems the enzymes that catalyze these reactions are the “handles” through which such alteration is effected. It is shown how the elasticity coefficients of an enzyme-catalyzed reaction with respect to substrates and products are the sum of a massaction term and a regulatory kinetic term; these coefficients therefore distinguish between massaction effects and regulatory effects and are recognized as the key to quantifying regulation. As elasticity coefficients are also basic ingredients of metabolic control analysis, it is possible to relate regulation to such concepts as control, signalling, stability, and homeostasis. The need for care in the choice of relative or absolute changes when considering questions of metabolic regulation is stressed. Although the concepts are illustrated in terms of a simple coupled reaction system, they apply equally to more complex systems. When such systems are divided into reaction blocks, co-response coefficients can be used to measure the elasticities of these blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, D. E. (1977).Cellular Energy Metabolism and Its Regulation, Academic Press, New York.

    Google Scholar 

  • Brown, G. C. (1993). InModern Trends in BioThermoKinetics (Schuster, S., Rigoulet, M., Ouhabi, R., and Mazat, J.-P, eds.), Plenum Press, New York, pp. 461–489.

    Google Scholar 

  • Brown, G. C., Hafner, R. P., and Brand, M. D. (1990).Eur. J. Biochem. 188, 321–325.

    Article  PubMed  Google Scholar 

  • Burns, J. A., Cornish-Bowden, A., Groen, A. K., Heinrich, R., Kacser, H., Porteous, J. W., Rapoport, S. M., Rapoport, T. A., Stucki, J. W., Tager, J. M., Wanders, R. J. A., and Westerhoff, H. V. (1985).Trends Biochem. Sci. 10, 16.

    Article  Google Scholar 

  • Chance, B. (1961).Cold Spring Harbor Symp. Quant. Biol. 26, 289–299.

    Google Scholar 

  • Chen, Y.-D., and Westerhoff, H. V. (1986).Math. Model. 7, 1173–1180.

    Article  Google Scholar 

  • Cornish-Bowden, A. (1981).Basic Mathematics for Biochemists. Chapman and Hall, London.

    Google Scholar 

  • Cornish-Bowden, A. (1995).Adv. Mol. Cell. Biol. 11, 21–64.

    Google Scholar 

  • Cornish-Bowden, A., and Hofmeyr, J.-H. S. (1991).Comp. Appl. Biosci. 7, 89–93.

    PubMed  Google Scholar 

  • Cornish-Bowden, A., and Hofmeyr, J.-H. S. (1994).Biochem. J. 298, 367–375.

    PubMed  Google Scholar 

  • Dawkins, R. (1986).The Blind Watchmaker, W. W. Norton, New York.

    Google Scholar 

  • Fell, D. A. (1992).Biochem. J. 286, 313–330.

    PubMed  Google Scholar 

  • Heinrich, R., and Rapoport, T. A. (1974).Eur. J. Biochem. 42, 89–95.

    Article  PubMed  Google Scholar 

  • Heinrich, R., Rapoport, S. M., and Rapoport, T. A. (1977).Prog. Biophys. Mol. Biol. 32, 1–82.

    Article  PubMed  Google Scholar 

  • Higgins, J. (1967).Ind. Eng. Chem. 59, 19–62.

    Article  Google Scholar 

  • Hofmeyr, J.-H. S., and Cornish-Bowden, A. (1991).Eur. J. Biochem. 200, 223–236.

    Article  PubMed  Google Scholar 

  • Hofmeyr, J.-H. S., Cornish-Bowden, A., and Rohwer, J. M. (1993).Eur. J. Biochem. 212, 833–837.

    Article  PubMed  Google Scholar 

  • Jacob, F. (1983). InEvolution from Molecules to Men (Rondall, D., ed.), Cambridge University Press, Cambridge.

    Google Scholar 

  • Kacser, H., and Burns, J. A. (1973).Symp. Soc. Exp. Biol. 32, 65–104.

    Google Scholar 

  • Kauffman, S. A. (1993).The Origins of Order: Self-Organisation and Selection in Evolution, Oxford University Press, New York.

    Google Scholar 

  • Melendez-Hevia, E., Waddell, T. G., and Montero, F. (1994).J. Theor. Biol. 166, 201–220.

    Article  Google Scholar 

  • Monod, J., Wyman, J., and Changeux, J.-P. (1965).J. Mol. Biol. 12, 88–118.

    PubMed  Google Scholar 

  • Nicolis, G., and Prigogine, I. (1977).Self-Organization in Non-Equilibrium Systems, Wiley, New York.

    Google Scholar 

  • Popova, S. V., and Sel'kov, E. E. (1975).FEBS Lett. 53, 269–273.

    Article  PubMed  Google Scholar 

  • Popova, S. V., and Sel'kov, E. E. (1978).Mol. Biol. (Moskva) 13, 129–139.

    Google Scholar 

  • Reich, J. G., and Sel'kov, E. E. (1981).Energy Metabolism of the Cell, Academic Press, London.

    Google Scholar 

  • Schuster, S., and Heinrich, R. (1992).BioSystems 27, 1–15.

    Article  PubMed  Google Scholar 

  • Stadtman, E. R. (1970). InThe Enzymes (Boyer, P., ed.), 3rd edn, Vol. 1, Academic Press, New York, pp. 397–459.

    Google Scholar 

  • Tyson, J. J. (1975).J. Chem. Phys. 62, 1010–1015.

    Article  Google Scholar 

  • Westerhoff, H. V., and van Dam, K. (1987).Thermodynamics and Control of Free-Energy Transduction, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I dedicate this paper to Henrik Kacser, co-founder of and guiding light in the field of metabolic control analysis. His recent death leaves us bereft of a fount of wisdom and kindness, but his work remains as a monument along the path of our search for an understanding of metabolic behavior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmeyr, JH.S. Metabolic regulation: A control analytic perspective. J Bioenerg Biomembr 27, 479–490 (1995). https://doi.org/10.1007/BF02110188

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110188

Key words

Navigation