Skip to main content
Log in

5-Aminolevulinate synthase and the first step of heme biosynthesis

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to yield 5-aminolevulinate. In animals, fungi, and some bacteria, 5-aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway. Mutations on the human erythroid 5-aminolevulinate synthase, which is localized on the X-chromosome, have been associated with X-linked sideroblastic anemia. Recent biochemical and molecular biological developments provide important insights into the structure and function of this enzyme. In animals, two aminolevulinate synthase genes, one housekeeping and one erythroid-specific, have been identified. In addition, the isolation of 5-aminolevulinate synthase genomic and cDNA clones have permitted the development of expression systems, which have tremendously increased the yields of purified enzyme, facilitating structural and functional studies. A lysine residue has been identified as the residue involved in the Schiff base linkage of the pyridoxal 5′-phosphate cofactor, and the catalytic domain has been assigned to the C-terminus of the enzyme. A conserved glycine-rich motif, common to all aminolevulinate synthases, has been proposed to be at the pyridoxal 5′phosphate-binding site. A heme-regulatory motif, present in the presequences of 5-aminolevulinate synthase precursors, has been shown to mediate the inhibition of the mitochondrial import of the precursor proteins in the presence of heme. Finally, the regulatory mechanisms, exerted by an iron-responsive element binding protein, during the translation of erythroid 5-aminolevulinate synthase mRNA, are discussed in relation to heme biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar, M., and Jordan, P. M. (1968).Chem. Commun. 1691–1692.

  • Bawden, M. J., Borthwick, I. A., Healy, H. M., Morris, C. P., May, B. K. and Elliott, W. H. (1987).Nucleic Acids Res. 15, 8563.

    PubMed  Google Scholar 

  • Biel, S. W., Wright, M. S., and Biel, A. J. (1988).J. Bacteriol. 170, 4382–4384.

    PubMed  Google Scholar 

  • Bishop, D. F. (1990).Nucleic Acids Res. 18, 7187–7188.

    PubMed  Google Scholar 

  • Bishop, D. F., Kitchen, H., Wood, W. A. (1981).Arch. Biochem. Biophys. 206, 380–391.

    PubMed  Google Scholar 

  • Bishop, D. F., Henderson, A. S., and Astrin, K. H. (1990).Genomics 7, 207–214.

    PubMed  Google Scholar 

  • Borthwick, I. A., Srivastava, G., Brooker, J. D., May, B. K., and Elliott, W. K. (1983).Biochem. J. 129, 615–620.

    Google Scholar 

  • Borthwick, I. A., Srivastava, G., Hobbs, A. A., Pirola, B. A., Brooker, J. D., May, B. K., and Elliott, W. K. (1984).Eur. J. Biochem. 144, 95–99.

    PubMed  Google Scholar 

  • Borthwick, I. A., Srivastava, G., Day, A. R., Pirola, B. A., Snoswell, M. A., May, B. K., and Elliott, W. H. (1985).Eur. J. Biochem. 150, 481–484.

    PubMed  Google Scholar 

  • Borthwick, I. A., Srivastava, G., Pirola, B. A., May, B. K., and Elliott, W. K. (1986).Methods Enzymol. 123, 395–401.

    PubMed  Google Scholar 

  • Bottomley, S. S., May, B. K., Cox, T. C., Cotter, P. D., and Bishop, D. (1995).J. Bioenerg. Biomembr., this issue.

  • Bradshaw, R. E., Dixon, S. W., Raitt, D. C., and Pillar, T. M., (1993).Curr. Genet. 23, 501–507.

    PubMed  Google Scholar 

  • Braidotti, G., Borthwick, I. A., and May, B. K. (1993).J. Biol. chem. 268, 1109–1117.

    PubMed  Google Scholar 

  • Branden, C., and Tooze, J. (1991). InIntroduction to Protein Structure (Branden, C., and Tooze, J., eds.). Garland, New York, pp. 141–159.

    Google Scholar 

  • Conboy, J. G., Cox, T. C., Bottomley, S. S., Bawden, M. J., and May, B. K. (1992).J. Biol. Chem. 267, 18753–18758.

    PubMed  Google Scholar 

  • Cotter, P., Baumann, M., and Bishop, D. F. (1992).Proc. Natl. Acad. Sci. USA 89, 4028–4032.

    PubMed  Google Scholar 

  • Cox, T. C., Bawden, M. J., Abraham, N. G., Bottomley, S. S., May, B. K., Baker, E., Chen, L. Z., and Sutherland, G. R. (1990).Am. J. Hum. Genet. 46, 107–111.

    PubMed  Google Scholar 

  • Cox, T. C. Bawden, M. J., Martin, A., and May, B. K. (1991).EMBO J. 10, 1891–1902.

    PubMed  Google Scholar 

  • Cox, T. C., Bottomley, S. S., Wiley, J. S., Bawden, M. J., Matthews, C. S., and May, B. K. (1994).N. Eng. J. Med. 330, 675–679.

    Google Scholar 

  • Dandekar, T., Stripeck, R., Gray, N. K., Goossen, B., Constable, A., Johanson, H. E., and Hentze, M. W. (1991).EMBO J. 10, 1903–1909.

    PubMed  Google Scholar 

  • Dierks, P. (1990). InBiosynthesis of Heme and Chlorophylls (Dailey, H. A., ed.), McGraw-Hill, New York, pp. 201–233.

    Google Scholar 

  • Drolet, M., and Sasarman, A. (1991).Mol. Gen. Genet. 226, 250–256.

    PubMed  Google Scholar 

  • Dzelzalns, V., Foley, T., and Beale, S. I. (1982).Arch. Biochem. Biophys. 216, 196–203.

    PubMed  Google Scholar 

  • Elliott, W. H., May, B. K., Bawden, M. J. and Hansen, A. J. (1989). InGene Expression: Regulation at the RNA and Protein Levels (Kay, J., Hallard, F. J., and Mayer, R. J., eds.). Biochemical Society Symposium 55, The Biochemical Society, London, pp. 13–27.

    Google Scholar 

  • Emery, V. C., and Akhtar, M. (1987). InEnzyme Mechanisms (Page, M. I., and Williams, A., eds.), The Royal Society of Chemistry, London, pp. 345–389.

    Google Scholar 

  • Fanica-Gaignier, M., and Clement-Metral, J. (1973).Eur. J. Biochem. 40, 19–24.

    PubMed  Google Scholar 

  • Ferreira, G. C., and Dailey, H. A. (1993).J. Biol. Chem. 268, 584–590.

    PubMed  Google Scholar 

  • Ferreira, G. C., Neame, P. J., and Dailey, H. A. (1993).Protein Sci. 2, 1959–1965.

    PubMed  Google Scholar 

  • Fraser, P. J., and Curtis, P. J. (1987).Genes Dev. 1, 855–861.

    PubMed  Google Scholar 

  • Fujita, H., Yamamoto, M., Yamagami, T., Hayashi, N., and Sassa, S. (1991).J. Biol. Chem. 266, 17494–17502.

    PubMed  Google Scholar 

  • Gibson, K. D., Laver, W. G., and Neuberger, A. (1958).Biochem. J. 70, 71–81.

    PubMed  Google Scholar 

  • Gong, J., and Ferreira, G. C. (1995).Biochemistry 34, 1678–1685.

    PubMed  Google Scholar 

  • Gray, N. E., and Hentze, M. W. (1994).EMBO J. 13, 3882–3891.

    PubMed  Google Scholar 

  • Haldi, M., and Guarente, L. (1989).J. Biol. Chem. 264, 17107–17112.

    PubMed  Google Scholar 

  • Hayashi, N., Watanabe, N., and Kikuchi, G. (1983).Biochem. Biophys. Res. Commun. 115, 700–706.

    PubMed  Google Scholar 

  • Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R. (1988).J. Biol. Chem. 263, 17857–17871.

    PubMed  Google Scholar 

  • Jordan, P. M. (1991). InBiosynthesis of Tetrapyrroles. (Jordan, P.M., ed.), Elsevier, Amsterdam, pp. 1–66.

    Google Scholar 

  • Jordan, P. M., and Laghai-Newton, A. (1986).Methods Enzymol. 123, 435–443.

    PubMed  Google Scholar 

  • Kikuchi, G., Kumar, A., Talmage, P., and Shemin, D. (1958).J. Biol. Chem. 233, 1214–1219.

    PubMed  Google Scholar 

  • Klausner, R. D., Rouault, T., and Harford, J. B. (1993).Cell 72, 19–28.

    PubMed  Google Scholar 

  • Laghai, A., and Jordan, P. M. (1976).Biochem. Soc. Trans. 4, 52–53.

    PubMed  Google Scholar 

  • Lathrop, J. T., and Timko, M. P. (1993).Science 259, 522–525.

    PubMed  Google Scholar 

  • Leong, S. A., Williams, P. H., and Ditta, G. S. (1985).Nucleic Acids Res. 13, 5965–5976.

    PubMed  Google Scholar 

  • Marceau, M., Mcfall, E., Lewis, S. D., and Shafer, J. A. (1988).J. Biol. Chem. 263 16926–16933.

    PubMed  Google Scholar 

  • May, B. K., Borthwick, I. A., Srivastava, G., Pirola, B. A., and Elliott, W. H. (1986).Curr. Top. Cell. Regul. 28, 233–262.

    PubMed  Google Scholar 

  • May, B. K., Bhasker, C. R., Bawden, M. J., and Cox, T. C. (1990).Mol. Biol. Med. 7, 405–421.

    PubMed  Google Scholar 

  • McClung, C. R., Somerville, J. E., Guerinot, M. L., and Chelm, B. K. (1987).Gene 54, 133–139.

    PubMed  Google Scholar 

  • Melefors, O., Goossen, B., Johansson, H. E., Stripecke, R., Gray, N. K., and Hentze, M. W. (1993).J. Biol. Chem. 268, 5974–5978.

    PubMed  Google Scholar 

  • Munakata, H., Tamagami, T., Nagai, T., Yamamoto, M., and Hayashi, N. (1993).J. Biochem. 114, 103–111.

    PubMed  Google Scholar 

  • Nakakuki, M., Yamauchi, K., Hayashi, N., and Kikuchi, G. (1980).J. Biol. Chem. 255, 1738–1745.

    PubMed  Google Scholar 

  • Nandi, D. L. (1978a).J. Biol. Chem. 253, 8872–8877.

    PubMed  Google Scholar 

  • Nandi, D. L. (1978b).Arch. Biochem. Biophys. 188, 266–271.

    PubMed  Google Scholar 

  • Neidl, E. L., and Kaplan, S. (1993).J. Bacterial. 175, 2292–2303.

    Google Scholar 

  • Ohashi, A., and Kikuchi, G. (1979).J. Biochem. 85, 239–247.

    PubMed  Google Scholar 

  • Page, M. D., and Ferguson, S. J. (1994).J. Bacteriol. 176, 5919–5928.

    PubMed  Google Scholar 

  • Riddle, R. D., Yamamoto, M., and Engel, J. D. (1989).Proc. Natl. Acad. Sci. USA 86, 792–796.

    PubMed  Google Scholar 

  • Rouault, T., Stout, C. D., Kaptain, S., Harford, J. B., and Klausner, R. D. (1992).Cell 64, 881–883.

    Google Scholar 

  • Samaniego, F., Chin, J., Iwai, K., Rouault, T. A., and Klausner, R. D. (1994).J. Biol. Chem. 269, 30904–30910.

    PubMed  Google Scholar 

  • Schoenhaut, D. S., and Curtis, P. J. (1986).Gene 48, 55–63.

    PubMed  Google Scholar 

  • Schoenhaut, D. S., and Curtis, P. J. (1989).Nucleic Acids Res. 17, 7013–7028.

    PubMed  Google Scholar 

  • Scholnick, P. L., Hammaker, L. E., and Marver, H. S. (1972).J. Biol. Chem. 247, 4126–4131.

    PubMed  Google Scholar 

  • Srivastava, G., Borthwick, I. A., Brooker, J. D., May, B. K., and Elliott, W. H. (1982).Biochim. Biophys. Acta 109, 305–312.

    Google Scholar 

  • Srivastava, G., Borthwick, I. A., Brooker, J. D., Wallace, J. C., May, B. K., and Elliott, W. H. (1983).Biochem. Biophys. Res. Commun. 117, 344–349.

    PubMed  Google Scholar 

  • Srivastava, G., Borthwick, I. A., Maguire, D. J., Elferink, C. J., Bawden, M. J., Mercer, J. F. B., and May, B. K. (1988).J. Biol. Chem. 263, 5202–5209.

    Google Scholar 

  • Srivastava, G., Bawden, M. J., Anderson, A., and May, B. K. (1989).Biochim. Biophys. Acta 1007, 192–195.

    PubMed  Google Scholar 

  • Srivastava, G., Hansen, A. J., Bawden, M. J., and May, B. K., (1990).Mol. Pharmacol. 38, 486–493.

    PubMed  Google Scholar 

  • Swindells, M. B. (1993).Protein Sci. 2, 2146–2153.

    PubMed  Google Scholar 

  • Tait, G. H. (1973).Biochem. J. 131, 389–403.

    PubMed  Google Scholar 

  • Urban-Grimal, D., Ribes, V., and Labbe-Bois, R. (1984).Curr. Genet. 8, 327–331.

    Google Scholar 

  • Urban-Grimal, D., Volland, C., Garnier, T., Dehoux, P., and Labbe-Bois, R. (1986).Eur. J. Biochem. 156, 511–519.

    PubMed  Google Scholar 

  • Volland, C., and Felix, F. (1984).Eur. J. Biochem. 142, 551–557.

    PubMed  Google Scholar 

  • Volland, C., and Urban-Grimal, D. (1988).J. Biol. Chem. 263, 8294–8299.

    PubMed  Google Scholar 

  • Wada, O., Sassa, S., Takaku, F., Yano, Y.. Zurata, G., Nakao, K. (1967).Biochim. Biophys. Acta 148, 585–587.

    PubMed  Google Scholar 

  • Warnick, G. R., and Burnham, B. F. (1971).J. Biol. Chem. 246, 6880–6885.

    PubMed  Google Scholar 

  • Watanabe, N., Hayashi, N., and Kikuchi, G. (1984).Arch. Biochem. Biophys. 232, 118–126.

    PubMed  Google Scholar 

  • Weber, I. T., Johnson, L. N., Wilson, K. S., Yeates, D. G. R., Wild, D. L., and Jenkins, J. A. (1978).Nature (London) 274, 433–437.

    Google Scholar 

  • Whiting, M. J., and Granick, S. (1976).J. Biol. Chem. 251, 1340–1346.

    PubMed  Google Scholar 

  • Wright, M. S., Eckert, J. J., Biel, S. W., and Biel, A. J. (1991).FEMS Microbiol. Lett. 78, 339–342.

    Google Scholar 

  • Yamamoto, M., Hayashi, N., and Kikuchi, G. (1983).Biochem. Biophys. Res. Commun. 115, 225–231.

    PubMed  Google Scholar 

  • Yamamoto, M., Yew, N. S., Federspeil, M., Dodgson, J. B., Hayashi, N., and Engel, J. D. (1985).Proc. Natl. Acad. Sci. USA 82, 3702–3706.

    PubMed  Google Scholar 

  • Yamamoto, M. K., Engel, J. D., and Hiraga, K. (1988).J. Biol. Chem. 263, 15973–15979.

    PubMed  Google Scholar 

  • Yamauchi, K., Hayashi, N., and Kikuchi, G. (1980).J. Biol. Chem. 255, 1746–1751.

    PubMed  Google Scholar 

  • Yomogida, K., Yamamoto, M., Yamagami, T., Fujita, H., and Hayashi, N. (1993).J. Biochem. 113, 364–371.

    PubMed  Google Scholar 

  • Zaman, Z., Jordan, P. M., and Akhtar, M. (1973).Biochem. J. 135, 257–263.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, G.C., Gong, J. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J Bioenerg Biomembr 27, 151–159 (1995). https://doi.org/10.1007/BF02110030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110030

Key words

Navigation