Skip to main content
Log in

The cosmological constant is back

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A diverse set of observations now compellingly suggest that the universe possesses a nonzero cosmological constant. In the context of quantum-field theory a cosmological constant corresponds to the energy density of the vacuum, and the favored value for the cosmological constant corresponds to a very tiny vacuum energy density. We discuss future observational tests for a cosmological constant as well as the fundamental theoretical challenges — and opportunities — that this poses for particle physics and for extending our understanding of the evolution of the universe back to the earliest moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, J., and Feinberg, G. (1986).Cosmological Constants (Columbia University Press, New York).

    Google Scholar 

  2. Turner, M. S., Steigman, G., and Krauss, L. (1984).Phys. Rev. Lett. 52, 2090; Turner, M. S. (1991).Physica Scripta T36, 167; Peebles, P. J. E. (1984).Astrophys. J. 284, 439; Efstathiou, G., et al. (1990).Nature 348, 705; Kofman, L., and Starobinskii, A. A. (1985).Sov. Astron. Lett. 11, 271.

    Google Scholar 

  3. Weinberg, S. (1989).Rev. Mod. Phys. 61, 1.

    Google Scholar 

  4. Krauss, L. M., and Turner, M. S. (1995). Preprint CLURU-P4-95.

  5. Jacoby, G. H., et al. (1992).Proc. Astron. Soc. Pacific 104, 599; Fukugita, M., Hogan, C. J., and Peebles, P. J. E. (1993).Nature 366, 309.

    Google Scholar 

  6. Freedman, W., et al. (1994).Nature 371, 757; also see Pierce, M., et al. (1994).ibid. 385.

    Google Scholar 

  7. See e.g. Chaboyer, B., et al. (1995). InThe Formation of the Milky Way, E. J. Alfaro and G. Tenorio-Tagle, eds. (Cambridge University Press, Cambridge); Sarajedini, A., and King, C. R. (1989).Astron. J. 98, 1624.

    Google Scholar 

  8. Winget, D. E., et al. (1987).Astrophys. J. 315, L77.

    Google Scholar 

  9. White, M., Scott, D., and Silk, J. (1994).Ann. Rev. Astron. Astrophys. 32, 319.

    Google Scholar 

  10. Peacock, J. A., and Dodds, S. J. (1994).Mon. Not. R. Astr. Soc. 267, 1020.

    Google Scholar 

  11. Copi, C., Schramm, D. N., and Turner, M. S. (1995).Science 267, 192.

    Google Scholar 

  12. Krauss, L., and Kernan, P. (1995).Phys. Lett. B347, 347.

    Google Scholar 

  13. Briel, U. G., et al. (1992).Astron. Astrophys. 259, L31; White, S. D. M., et al. (1993).Nature 366, 429; White, D. A., and Fabian, A. C. (1995).Mon. Not. R. Astr. Soc. in press.

    Google Scholar 

  14. Coleman, S. (1988).Nucl. Phys. B 310, 643.

    Google Scholar 

  15. Hill, C. T., Fry, J. and Schramm, D. N. (1991).Comments on Nuc. Part. Sci. 19, 25.

    Google Scholar 

  16. Fukujita, M., and Turner, E. L. (1991).Mon. Not. R. Astr. Soc. 253, 99; Krauss, L. M., and White, M. (1992).Astrophys. J. 394 385; Kochanek, C. S. (1992).ibid. 348, 1.

    Google Scholar 

  17. Krauss, L., and Schramm, D. N. (1993).Astrophys. J. 405, L43.

    Google Scholar 

  18. Sugiyama, N. (1994). CfPA preprint CfPA-TH-94-62.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This essay received the fifth award from the Gravity Research Foundation, 1995-Ed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, L.M., Turner, M.S. The cosmological constant is back. Gen Relat Gravit 27, 1137–1144 (1995). https://doi.org/10.1007/BF02108229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02108229

Keywords

Navigation