Skip to main content
Log in

Genetic alterations in primary breast cancer

  • 11th San Antonio Breast Cancer Symposium-Plenary Lecture
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

A serious effort has been made to identify and characterize mutations that frequently occur during the evolution of primary human breast cancer. Some of these mutations involve amplification of protooncogenes (c -myc, c-erbB-2, andint-2) that have been shown to contribute to experimentally induced breast cancer in mouse model systems. Tumor development in mice containing the c -myc or c -erbB-2 transgene suggests that the cellular and developmental contexts in which the genes are expressed define their relative contribution to tumorigenesis. Homozygous deletions or loss of heterozygosity (LOH) represent another type of mutation that has been frequently observed on four chromosomes (1q, 3p, 11p, and 13q) in tumor DNA. They are thought to unmask recessive mutations (LOH) that inactivate or remove (homozygous deletion) suppressor genes that regulate normal cell proliferation. Attempts to determine whether specific mutations are associated with certain clinical parameters have led to the controversial hypothesis that some mutations may be useful prognostic indicators of the post-surgical course of the disease. The current results underscore the necessity for much larger, better control studies to unambiguously define the potential of such mutations as clinical markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein G: The role of gene dosage and genetic transposition in carcinogenesis. Nature 294: 290–293, 1981

    Article  PubMed  Google Scholar 

  2. Bishop J: Viral oncogenes. Cell 42: 23–38, 1985

    Article  PubMed  Google Scholar 

  3. Aaronson SA, Tronick SR: The role of oncogenes in human neoplasia. In: DeVita VT, Hellman S, Rosenberg SA (eds) Important Advances in Oncology 1985. JB Lippincott, Philadelphia, 1985, pp 3–15

    Google Scholar 

  4. Ali IU, Lidereau R, Callahan R: Heterogeneity of genetic alterations in primary human breast tumors. In: Lippman ME, Dickson RB (eds) Breast Cancer: Cellular and Molecular Biology. Martinus Nijhoff Publishers, Boston, MA, 1988, pp 25–48

    Google Scholar 

  5. Ali IU, Callahan R: Prognostic significance of genetic alterations in human breast carcinoma. In: Cossman J (ed) Molecular Genetics and the Diagnosis of Cancer. Elsevier Science Pub, New York, 1988, in press

    Google Scholar 

  6. Ali IU, Campbell G, Merlo GR, Smith GH, Callahan R, Lidereau R: Multiple genetic alterations in human breast cancer and their possible prognostic significance. In: Cancer Cell: Molecular Diagnostics of Human Cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988, in press

    Google Scholar 

  7. Teich N, Wyke J, Mak T, Bernstein A, Hardy W: Pathogenesis of retrovirus induced disease. In: Weiss R, Teich N, Varmus HE, Coffin J (eds) Molecular Biology of Tumor Viruses, RNA Tumor Viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1982, pp 845–856

    Google Scholar 

  8. Varmus HE: Recent evidence for oncogenesis by insertion mutagenesis and gene activation. Cancer Surv 1: 309–319, 1982

    Google Scholar 

  9. Nusse R, Varmus H: Mammary tumor induced by the mouse mammary tumor virus: evidence for a common region for provirus integration in the same region of the host genome. Cell 31: 99–109, 1982

    Article  PubMed  Google Scholar 

  10. Peters G, Brookes S, Smith R, Dickson C: Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 33: 369–377, 1983

    Article  PubMed  Google Scholar 

  11. Gallahan D, Callahan R: Mammary tumorigenesis in feral mice: identification of a newint locus in MMTV(Czech II)-induced mammary tumors. J Virol 61: 66–74, 1986

    Google Scholar 

  12. Nusse R, van Ooyen A, Cox D, Fung Y-K, Varmus H: Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131–136, 1984

    Article  PubMed  Google Scholar 

  13. Peters G, Kozak C, Dickson C: Mouse mammary tumor virus integration regionint-1 andint-2 map on different mouse chromosomes. Mol Cell Biol 4: 375–378, 1984

    PubMed  Google Scholar 

  14. Gallahan D, Kozak C, Callahan R: A new common integration region (int-3) for the mouse mammary tumor virus on mouse chromosome 17. J Virol 61: 218–220, 1986

    Google Scholar 

  15. Jakobovits A, Shackleford GM, Varmus HE, Martin GR: Two proto-oncogenes implicated in mammary carcinogenesis,int-1 andint-2, are independently regulated during mouse development. Proc Natl Acad Sci USA 83: 7806–7810, 1986

    PubMed  Google Scholar 

  16. Shackleford GM, Varmus H: Expression of the protooncogeneint-1 is restricted to postmeiotic male germ cells and the neural tube of mid-gestational embryos. Cell 50: 89–95, 1987

    Article  PubMed  Google Scholar 

  17. Wilkinson DG, Bailes JA, McMahon AP: Expression of the proto-oncogeneint-1 is restricted to specific neural cells in the developing mouse embryo. Cell 50: 79–88, 1987

    Article  PubMed  Google Scholar 

  18. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE: Expression of theint-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55: 619–625, 1988

    Article  PubMed  Google Scholar 

  19. Dickson C, Peters G: Potential oncogene product related to growth factors. Nature 326: 833, 1987

    Article  Google Scholar 

  20. Gospodarowicz D, Neufeld G, Schweigerer L: Fibroblast growth factor. Mol Cell Endocrinol 46: 187–204, 1986

    Article  PubMed  Google Scholar 

  21. Sukumar S, Notario V, Martin-Zanca D, Barbacid M: Induction of mammary carcinomas in rats by nitroso-methyl-urea involves the malignant activation of the H-ras-1 locus by single point mutations. Nature 306: 658–661, 1983

    Article  PubMed  Google Scholar 

  22. Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M: Direct mutagenesis of Ha-ras-1 oncogenes byN-nitroso-N-methyl urea during initiation of mammary carcinogenesis in rats. Nature 315: 382–385, 1985

    Article  PubMed  Google Scholar 

  23. Dandekar S, Sukumar S, Zarbl H, Young LJT, Cardiff RD: Specific activation of the cellular Harveyras oncogene in dimethylbenzanthracene induced mouse mammary tumors. Mol Cell Biol 6: 4104–4108, 1986

    PubMed  Google Scholar 

  24. Land H, Parada L, Weinberg RA: Cellular oncogenes and multistep carcinogenesis. Nature 304: 596–602, 1983

    Article  PubMed  Google Scholar 

  25. DePinho RA, Legony E, Feldman LB, Kohl NE, Yancopoulos GD, Alt FW: Structure and expression of the murine N-myc gene. Proc Natl Acad Sci USA 83: 1827–1831, 1986

    PubMed  Google Scholar 

  26. Legony E, DePinho R, Zimmerman K, Collum R, Yancopoulos G, Mitsock L, Krie R, Alt FW: Structure and expression of the murine L myc gene. EMBO J 6: 3359–3366, 1987

    PubMed  Google Scholar 

  27. Minna JD: Lung Cancer 4 (Suppl. 1): 6–10, 1988

    Google Scholar 

  28. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Biship JM: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124, 1984

    PubMed  Google Scholar 

  29. Downward J, Yarden Y, Mayes E, Scrace G, Totly N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD: Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences. Nature 307: 521–527, 1984

    Article  PubMed  Google Scholar 

  30. Costa SD, Fabbra D, Reyazzi R, Kung W, Eppenberger U: Correlation between hormone dependency and the regulation of epidermal growth factor receptor by tumor promoters in human mammary carcinoma cells. Proc Natl Acad Sci USA 83: 991–995, 1986

    PubMed  Google Scholar 

  31. Libermann TA, Razon N, Burtel AD, Yarden Y, Schlessinger J, Sorey H: Expression of epidermal growth factor receptors in human brain tumors. Cancer Res 44: 753–760, 1984

    PubMed  Google Scholar 

  32. Ullrich A, Cousseus L, Hay Flick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfield MD, Seeburg PH: Human epidermal growth factor receptor cDNA sequence and abberant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309: 418–425, 1984

    Article  PubMed  Google Scholar 

  33. Yamamoto T, Kamata N, Kawano H, Shimizu S, Kuroki T, Toyoshima K, Rikimaru K, Nomura N, Ishizaki R, Pastan I, Gamou S, Shimizu W: High incidence of amplification of the epidermal growth factor receptor gene in human squamous carcinoma line. Cancer Res 46: 414–416, 1986

    PubMed  Google Scholar 

  34. Schechter AL, Stern DF, Valdyanathan L, Decker SJ, Drebin JA, Greene ME, Weinberg RA: Theneu oncogene: anerbB related gene encoding a 185,000-M tumor antigen. Nature 312: 513–516, 1984

    Article  PubMed  Google Scholar 

  35. Shih C, Padney L, Murray M, Weinberg RA: Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290: 261–264, 1981

    Article  PubMed  Google Scholar 

  36. Bargmann CI, Hung MC, Weinberg RA: Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45: 649–657, 1986

    Article  PubMed  Google Scholar 

  37. Drebin JA, Link VC, Stern DE, Weinberg RA, Greene MI: Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41: 695–706, 1985

    Article  Google Scholar 

  38. Drebin JA, Link VC, Weinberg RA, Greene MI: Inhibition of tumor growth by a monoclonal antibody reactive with an oncogene-encoded tumor antigen. Proc Natl Acad Sci USA 83: 9129–9133, 1986

    PubMed  Google Scholar 

  39. Drebin JA, Link VC, Greene MI: Monoclonal antibodies specific for theneu oncogene product directly mediate anti-tumor effectsin vivo. Oncogene 2: 273–277, 1988

    PubMed  Google Scholar 

  40. Semba K, Kamata N, Toyoshima F, Yamamoto T: A v-erb B related proto-oncogene, c-erbB-2, is distinct from the c-erb B-1/EGF receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 82: 6497–6501, 1985

    PubMed  Google Scholar 

  41. Fukushige SI, Mastsubara KI, Yoshida M, Sasaki M, Suzuki T, Semba K, Toyoshima K, Yamamoto T: Localization of a novel v-erb B related gene, c-erb B-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol 6: 955–958, 1986

    PubMed  Google Scholar 

  42. Yokota J, Yamamoto T, Toyoshima K, Terada M, Sugimura T, Battifora H, Cline MJ: Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet 1: 765–767, 1986

    Article  PubMed  Google Scholar 

  43. Thor A, Ohuchi N, Horan Hand P, Callahan R, Weeks MO, Theillet C, Lidereau R, Escot C, Page D, Vilasi V, Schlom J:ras gene alterations and enhanced levels ofras p21 expression in a spectrum of benign and malignant human mammary tissues. Lab Invest 55: 603–615, 1986

    PubMed  Google Scholar 

  44. Horan Hand P, Vilasi V, Thor A, Ohuchi N, Schlom J: Quantitation of Harveyras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 79: 59–65, 1987

    PubMed  Google Scholar 

  45. Stanbridge EJ, Flandermeyer RR, Daniels DW, Nelson-Rees WA: Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic Cell Genet 7: 699–709, 1981

    Article  PubMed  Google Scholar 

  46. Kaebling M, Klinger HP: Suppression of tumorigentcity in somatic cell hybrids. III. Cosegration of human chromosome 11 of a normal cell and suppression of tumorigenicity in intraspecies hybrids of normal diploid malignant cells. Cytogenet Cell Genet 41: 65–70, 1985

    Google Scholar 

  47. Knudson AG: Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823, 1971

    PubMed  Google Scholar 

  48. Gilbert F, Feder M, Balaban G, Brangman D, Luri DK, Podolsky R, Rinaldt V, Vinikoor N, Weiskand J: Human neuroblastomas and abnormalities of chromosome 1 and 17. Cancer Res 44: 5444–5449, 1984

    PubMed  Google Scholar 

  49. Raizis AM, Becroft DM, Shaw RL, Reeve AE: A mitotic recombination in Wilms' tumor occurs between the parathyroid hormone locus and 11p13. Hum Genet 70: 344–346, 1985

    Article  PubMed  Google Scholar 

  50. Mathew CGP, Smith BA, Thorpe K, Wong Z, Royle NJ, Jeffereys AJ, Ponder BAJ: Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 328: 524–526, 1987

    Article  PubMed  Google Scholar 

  51. Yokota J, Wada M, Shimosato Y, Terada M, Sugimura T: Loss of heterozygosity on chromosome 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci USA 84: 9252–9256, 1987

    PubMed  Google Scholar 

  52. Naylor SL, Johnson BE, Minna JD, Sakaguchi AY: Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature 329: 451–454, 1987

    Article  PubMed  Google Scholar 

  53. Kovacs G, Erlandsson R, Boldog F, Ingvarsson F, Müller-Brechlin R, Klein G, Sümegi J: Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci USA 85: 1571–1575, 1988

    PubMed  Google Scholar 

  54. Zbar B, Branch H, Talmadge C, Linehan M: Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327: 721–724, 1987

    Article  PubMed  Google Scholar 

  55. Solomon E, Voss R, Hall V, Bodmer WF, Jass JR, Jeffreys AJ, Lucibello FC, Patel I, Rider SH: Chromosome 5 allele loss in human colorectal carcinomas. Nature 328: 616–619, 1987

    Article  PubMed  Google Scholar 

  56. Vogelstein B, Fearou ER, Hamilton SR, Kern SE, Presinger AC, Leppert M, Nakamura Y, White R, Smiths AMM, Bos SL: Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525–532, 1988

    PubMed  Google Scholar 

  57. Okamoto M, Sasaki M, Sugio K, Sato C, Iwama T, Ikeuchi T, Tonomura A, Sasazuki T, Miyaki M: Loss of constitutional heterozygosity in colon carcinoma from patients with familial polyposis coli. Nature 331: 273–277, 1988

    Article  PubMed  Google Scholar 

  58. Riccardi VM, Sujansky E, Smith AC, Franke U: Chromosome imbalance in the Aniridia-Wilms' tumor association: 11p interstitial deletion. Pediatrics 61: 604–610, 1978

    PubMed  Google Scholar 

  59. Koufos A, Hansen MF, Lampkin BC, Workman ML, Copeland NG, Jenkins NA, Cavence WK: Loss of alleles at loci of human chromosome 11 during geneosis of Wilms' tumor. Nature 309: 170–172, 1984

    Article  PubMed  Google Scholar 

  60. Orkin SH, Goldman DS, Sallan SE: Development of homozygosity for chromosome 11p markers in Wilms' tumor. Nature 309: 172–174, 1984

    Article  PubMed  Google Scholar 

  61. Reeve AE, Harsiaux PJ, Gardner RJM, Chewings WE, Grindley RM, Millow LJ: Loss of Harveyras allele in sporadic Wilms' tumor. Nature 309: 174–176, 1984

    Article  PubMed  Google Scholar 

  62. Fearon ER, Vogelstein B, Feinberg AP: Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumors. Nature 309: 176–178, 1984

    Article  PubMed  Google Scholar 

  63. Scrable HJ, Witte DP, Lampkin BC, Cavenee WK: Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 329: 645–647, 1987

    Article  PubMed  Google Scholar 

  64. Fearon ER, Feinberg AP, Hamilton SH, Vogelstein B: Loss of genes on the short arm of chromosome 11 in bladder cancer. Nature 318: 377–380, 1985

    Article  PubMed  Google Scholar 

  65. Shiraishi M, Morinaga S, Noguchi M, Shimosato Y, Sekiya T: Loss of genes on the short arm of chromosome 11 in human lung carcinoma. Jpn J Cancer Res 78: 1302–1308, 1987

    PubMed  Google Scholar 

  66. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbort R, Gallie BL, Murphee AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanism in retinoblastoma. Nature 305: 779–784, 1983

    Article  PubMed  Google Scholar 

  67. Hansen MF, Koufos A, Gallie BL, Phillips RA, Fodstad O, Brogger A, Gedde-Dahl T, Cavenee WK: Osteosarcoma and retinoblastoma: A shared chromosomal mechanism revealing recessive predisposition. Proc Natl Acad Sci USA 82: 6216–6220, 1985

    PubMed  Google Scholar 

  68. Harbour JW, Lai S-L, Whang-Peng J, Guzdar AF, Minna JD, Kaye FJ: Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241: 353–341, 1988

    PubMed  Google Scholar 

  69. Seizinger BR, Rouleau G, Ozelius LJ, Lane AH, St. George-Hyslop P, Huson S, Gusella JF, Martina RL: Common pathogenetic mechanisms for three tumor types in bilateral acoustic neurofibromatosis. Science 236: 317–319, 1987

    PubMed  Google Scholar 

  70. Dumanski JP, Carlbom E, Collins VP, Nordenskjöld M: Deletion mapping of a locus on human chromosome 22 involved in the oncogenesis of meningioma. Proc Natl Acad Sci USA 84: 9275–9279, 1987

    PubMed  Google Scholar 

  71. Seizinger BR, Martuza RL, Gusella JF: Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322: 644–647, 1986

    Article  PubMed  Google Scholar 

  72. Rouleau GA, Wertelecki W, Haines JL, Hobbs WJ, Trofatter JA, Seizinger BR, Martuza RL, Superneau DW, Conneally PM, Gusella JR: Genetic linkage of bilateral acoustic neurofibromatosis to a DNA marker on chromosome 22. Nature 329: 246–248, 1987

    Article  PubMed  Google Scholar 

  73. Bodmer WF, Bailey CJ, Bodmer J, Bussay HJR, Ellis A, Gorman P, Lucibello FC, Murday VA, Rider SH, Scambler P, Sheer D, Solomon E, Spurr NK: Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328: 614–616, 1987

    Article  PubMed  Google Scholar 

  74. Kozbor D, Croce C: Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines. Cancer Res 44: 438–441, 1984

    PubMed  Google Scholar 

  75. Modjtahedi N, Lavielle C, Poupon M-F, Landin RM, Cassingena R, Monier R, Brison O: Increased level of amplification of the c-myc oncogene in tumors induced in nude mice by a human breast carcinoma cell line. Cancer Res 45: 4372–4379, 1985

    PubMed  Google Scholar 

  76. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, Callahan R: Genetic alteration of the c-myc proto-oncogene (myc) in human primary breast carcinomas. Proc Natl Acad Sci USA 83: 4834–4838, 1986

    PubMed  Google Scholar 

  77. Cline MJ, Battijona H, Yokota J: Proto-oncogene abnormalities in human breast cancer: correlation with anatomic features and clinical course of disease. J Clin Oncol 5: 999–1006, 1987

    PubMed  Google Scholar 

  78. Varley JM, Swallow JE, Brammar WJ, Whittaker JL, Walker RA: Alterations to either c-erbB-2 (neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1: 423–430, 1987

    PubMed  Google Scholar 

  79. Bonilla M, Ramirez M, Lopez-Cueto J, Gariglio P:In vivo amplification and rearrangement of c-myc oncogene in human breast tumors. J Natl Cancer Inst 80: 665–671, 1988

    PubMed  Google Scholar 

  80. Guerin M, Barrois M, Terrier MJ, Spielmann M, Riou G: Overexpression of either c-myc or c-erbB-2/neu protooncogenes in human breast carcinomas: correlation with poor prognosis. Oncogene Res 3: 21–31, 1988

    PubMed  Google Scholar 

  81. Mariani-Costantini R, Escot C, Theillet C, Gentile A, Merlo G, Lidereau R, Callahan R:In situ myc expression and genomic status of the c-myc locus in infiltrating ductal carcinomas of the breast. Cancer Res 48: 199–205, 1988

    PubMed  Google Scholar 

  82. Slamon DJ, Clark GM, Wong SG, Levin WS, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987

    PubMed  Google Scholar 

  83. van de Vijver M, van de Bersselaur R, Devilee P, Cornelisse C, Peterse J, Nusse R: Amplification ofneu (c-erb B-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erb A oncogene. Mol Cell Biol 7:2019–2023, 1987

    PubMed  Google Scholar 

  84. Zhou D, Battifora H, Yokota J, Yamamoto T, Cline MJ: Association of multiple copies of the c-erbB-2 oncogene with spread of breast cancer. Cancer Res 47: 6123–6125, 1987

    PubMed  Google Scholar 

  85. Venter DJ, Tuzi NL, Kumar S, Gullick WJ: Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: immunohistological assessment correlates with gene amplification. Lancet ii: 69–72, 1987

    Article  Google Scholar 

  86. Ali IU, Campbell G, Lidereau R, Callahan R: Lack of evidence for the prognostic significance of c-erbB-2 amplification in human breast carcinoma. Oncogene Res 3: 139–146, 1988

    PubMed  Google Scholar 

  87. Berger MS, Locher GW, Sauer S, Gullick WJ, Waterfield MD, Groner B, Hynes NE: Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res 48: 1238–1243, 1988

    PubMed  Google Scholar 

  88. Green S, Chambon P: A superfamily of potentially oncogenic hormone receptors. Nature 324: 615–619, 1986

    Article  PubMed  Google Scholar 

  89. van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, Nusse R: neu protein overexpression in breast cancer: association with comedo-type ductal carcinomasin situ and limited prognostic value in stage II breast cancer. N Engl J Med 319: 1239–1245, 1988

    PubMed  Google Scholar 

  90. Lidereau R, Callahan R, Dickson C, Peters G, Escot C, Ali IU: Amplification of theint-2 gene in primary human breast tumors. Oncogene Res 2: 285–291, 1988

    PubMed  Google Scholar 

  91. Varley JM, Walker RA, Casey G, Brammar WJ: A common alteration to theint-2 proto-oncogene in DNA from primary breast carcinomas. Oncogene 3: 87–90, 1988

    Google Scholar 

  92. Zhou DJ, Casey G, Cline MJ: Amplification of humanint-2 in breast cancers and squamous carcinomas. Oncogene 2: 279–282, 1988

    PubMed  Google Scholar 

  93. Ali IU, Merlo G, Lidereau R, Callahan R: The amplification unit on chromosome 11q13 in aggressive primary human breast tumors contains thebcl-1,int-2, andhst loci. Oncogene (submitted for publication)

  94. Tsujimoto Y, Jaffe E, Cossman J, Gorhan J, Nowell PC, Croce CM: Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature 315: 340–343, 1985

    Article  PubMed  Google Scholar 

  95. Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, Sekiguchi M, Terada M, Sugimura T: Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci USA 83: 3997–4001, 1986

    PubMed  Google Scholar 

  96. Delli Bovi P, Curatola AM, Kern FG, Greco A, Ittmann M, Basilico C: An oncogene isolated by transfection of Kaposi's sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 50: 729–737, 1987

    Article  PubMed  Google Scholar 

  97. Yoshida T, Miyagawa K, Odagiri H, Sakamoto H, Little PFR, Terada M, Sugimura T: Genomic sequence ofhst, a transforming gene encoding a protein homologous to fibroblast growth factors and theint-2 encoded protein. Proc Natl Acad Sci USA 84: 7305–7309, 1987

    PubMed  Google Scholar 

  98. Liscia DS, Merlo GR, Garrett C, Mariani-Costantini R, French P, Callahan R: Expression ofint-2 RNA in human tumors amplified at theint-2 locus. Manuscript in preparation

  99. Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gest J, Schlom J, Callahan R: Frequent loss of a H-ras-1 allele correlates with aggressive human primary breast carcinomas. Cancer Res 46: 4776–4781, 1986

    PubMed  Google Scholar 

  100. Ali IU, Lidereau R, Thiellet C, Callahan R: Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science 238: 185–188, 1987

    PubMed  Google Scholar 

  101. Ali IU, Meissner S, Lidereau R, Callahan R: Allelic deletion of c-erb A-2 proto-oncogene in human breast carcinoma signifies possible recessive mutation in member(s) of steroid/thyroid hormone receptor family. Manuscript in preparation

  102. Yunis JJ, Soreng AL: Constitutional fragile sites and cancer. Science 226: 1199–1204, 1984

    PubMed  Google Scholar 

  103. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM: The c-erb A gene encodes a thyroid hormone receptor. Nature 324: 641–646, 1986

    Article  PubMed  Google Scholar 

  104. Rider SH, Gorman PA, Shipley JM, Moore G, Vennström B, Solomon E, Sheer D: Localization of the oncogene c-erbA-2 to human chromosome 3. Ann Hum Genet 51: 153–160, 1987

    PubMed  Google Scholar 

  105. Ali IU, Meissner S, Spurr N, Callahan R: Mapping of the c-erbA-2 proto-oncogene to chromosome 3p and its homology with the thyroid hormone receptor gene. Manuscript in preparation

  106. Rapp UR, Reynolds FH, Stephenson JR: New mammalian transforming retrovirus: demonstration of a polyprotein gene product. J Virol 45: 914–924, 1983

    PubMed  Google Scholar 

  107. Alexander RW, Moscovici C, Vogt PK: Avian oncovirus Mill Hill No. 2: pathogenicity in chickens. J Natl Cancer Inst 62: 359–366, 1979

    PubMed  Google Scholar 

  108. Lundberg C, Skoog L, Cavenee WK, Nordenskjöld M: Loss of heterozygosity in human ductal breast tumors indicates a recessive mutation on chromosome 13. Proc Natl Acad Sci USA 84: 2372–2376, 1987

    PubMed  Google Scholar 

  109. Lee E, Y-H P, To H, Shew J-Y, Bookstein R, Scully P, Lee W-H: Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241: 218–221, 1988

    PubMed  Google Scholar 

  110. T'ang A, Varley JM, Chakraborty S, Linn-Murphree A, Fung Y-KT: Structural rearrangement of the retinoblastoma gene in human breast carcinoma. Science 242: 263–266, 1988

    PubMed  Google Scholar 

  111. Gendler S, Taylor-Papadimitriou J, Duhig T, Rothbard J, Burchell J: A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem 263: 12820–12823, 1988

    PubMed  Google Scholar 

  112. Siddiqui J, Abe M, Hayes D, Shani E, Yunis E, Kufe D: Isolation and sequencing of a cDNA coding for the human DF-3 breast carcinoma-associated antigen. Proc Natl Acad Sci USA 85: 2320–2323, 1988

    PubMed  Google Scholar 

  113. Swallow D, Gendler S, Griffiths B, Kearney A, Povey S, Sheer D, Palmer RW, Taylor-Papadimitriou J: The human tumor associated epithelial mucins are coded by an expressed hypervariable gene locus. Am Hum Genet 51: 289–294, 1987

    Google Scholar 

  114. Merlo GR, Siddiqui J, Cropp C, Liscia PS, Lidereau R, Callahan R, Kufe DW: DF-3 tumor-associated antigen gene is frequently altered in primary human breast carcinomas. Submitted for publication

  115. Tandon A, Clark G, Ullrich A, Slamon D, McGuire W: Overexpression of the HER-2/neu oncogene predicts relapse and survival in stage II human breast cancers. Proc Amer Soc Clin Oncol 7: 14, 1988

    Google Scholar 

  116. Barnes DM, Lammie GA, Millis RR, Gullick DL, Allen DS, Altman DG: An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma. Br J Cancer 58: 448–452, 1988

    PubMed  Google Scholar 

  117. Gusterson BA, Machin LG, Gullick WJ, Gibbs NM, Powles TJ, Elliot C, Ashley S, Monaghan P, Harrison S: c-erbB-2 expression in benign and malignant breast disease. Br J Cancer 58: 453–457, 1988

    PubMed  Google Scholar 

  118. Goelz SE, Hamilton SR, Vogelstein B: Purification of DNA from formaldehyde fixed and paraffin embedded human tissue. Biochem Biophys Res Comm 130: 118–126, 1985

    Article  PubMed  Google Scholar 

  119. Dubeau L, Chandler LA, Gralow JR, Nichols PW, Jones PA: Southern blot analysis of DNA extracted from formalin fixed pathology specimens. Cancer Res 46: 2964–2969, 1986

    PubMed  Google Scholar 

  120. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis EB, Erlich HA: Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491, 1988

    PubMed  Google Scholar 

  121. Shibata D, Martin WJ, Arnheim N: Analysis of DNA sequences in forty-year old paraffin embedded thin tissue sections: a bridge between molecular biology and classical histology. Cancer Res 48: 4564–4566, 1988

    PubMed  Google Scholar 

  122. Stewart T, Pattengale P, Leder P: Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MMTV/myc fusion genes. Cell 38: 627–637, 1984

    Article  PubMed  Google Scholar 

  123. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P: Coexpression of MMTV/v-H-ras and MMTV/c-myc genes in transgenic mice: synergistic actions of oncogenesin vivo. Cell 49: 465–475, 1987

    Article  PubMed  Google Scholar 

  124. Andres AC, Schonenberger CA, Groner B, Henninghausen L, LeMaur M, Gerlinger P: Ha ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc Natl Acad Sci USA 84: 1299–1303, 1987

    PubMed  Google Scholar 

  125. Schonenberger CA, Andres AC, Groner B, van der Valk M, LeMeur M, Gerlinger P: Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumors with constitutive milk protein gene transcription. EMBO J 7:169–175, 1988

    PubMed  Google Scholar 

  126. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P: Single step induction of mammary adenocarcinoma in transgenic mice bearing activated c-neu oncogene. Cell 54: 105–115, 1988

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callahan, R. Genetic alterations in primary breast cancer. Breast Cancer Res Tr 13, 191–203 (1989). https://doi.org/10.1007/BF02106570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02106570

Key words

Navigation