Skip to main content
Log in

Evolving sea urchin histone genes-nucleotide polymorphisms in the H4 gene and spacers ofStrongylocentrotus purpuratus

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We present a comparison of spacer and coding sequences of histone gene repeats from fourStronglycocentrotus purpuratus individuals. Sequences of two previously cloned units (pCO2 and pSp2) were compared with three new histone gene clones, two of them from a single individual. Within a 1.7-kb region, 59 polymorphic sites were found in spacers, in mRNA nontranslated stretches, and at silent sites in codons of the H4 gene. The permitted silent-site changes were as frequent as in any other region studied. The most abundant polymorphisms were single-base substitutions. The ratio of transitions: tranversions: single-base-pair insertions/deletions was 3∶2∶2. A number of larger insertions/deletions were found, as well as differences in the length of (CTA)n and (CT)n runs. Two of the five cloned repeats contained an insertion of a 195-bp element that is also present at many other sites in the genomes of everyS. purpuratus individual studied. Pairwise comparisons of the different clones indicate that the variation is not uniformly divergent, but ranges from a difference of 0.34% to 3.0% of all nucleotide sites. A parsimonious tree of ancestry constructed from the pariwise comparisons indicates that recombination between the most distantly related repeats has not occurred in the 1–2 million years necessary for accumulation of the variation. The level of sequence variation found within theS. purpuratus population, for both tandemly repeated and single-copy genes, is 25%–50% of that found betweenS. purpuratus andS. drobachiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    PubMed  Google Scholar 

  • Benton WD, Davis RW (1977) Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196:180–182

    PubMed  Google Scholar 

  • Birnstiel ML, Weinberg ES, Pardue ML (1974) Evolution of 9S mRNA sequences. In: Hamkalo BA, Papaconstantinou J (eds) Molecular cytogenetics. Plenum Press, New York London, pp 75–93

    Google Scholar 

  • Blattner FR, Williams BG, Blechl AE, Denniston-Thompson K, Faber HE, Furlong L, Grunwald DJ, Kiefer DO, Moore DD, Schumm JW, Sheldon EL, Smithies O (1977) Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science 196:161–169

    PubMed  Google Scholar 

  • Britten RJ, Cetta A, Davidson EH (1978) The single copy DNA sequence polymorphism of the sea urchinStrongylocentrotus purpuratus. Cell 15:1175–1186

    Article  PubMed  Google Scholar 

  • Brutlag DL, Clayton J, Friedland P, Kedes LH (1982) SEQ: a nucleotide sequence analysis and recombination system. Nucleic Acids Res 10:279–294

    PubMed  Google Scholar 

  • Busslinger MD, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO J 1:27–33

    Google Scholar 

  • Childs G, Nocente-McGrath C, Lieber T, Holt C, Knowles J (1982) Sea urchin (Lytechinus pictus) late-stage histone H3 and H4 genes: characterization and mapping of a clustered but nontandemly linked multigene family. Cell 31:383–393

    Article  PubMed  Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  PubMed  Google Scholar 

  • Gojobori T, Li W-H, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18:360–369

    PubMed  Google Scholar 

  • Grosschedl R, Birnstiel ML (1980a) Identification of regulatory sequences in the prelude sequences of an H2A histone gene by study of specific deletion mutantsin vivo. Proc Natl Acad Sci USA 77:1432–1436

    PubMed  Google Scholar 

  • Grosschedl R, Birnstiel ML (1980b) Spacer DNA sequences upstream of the TATAAAATA sequence are essential for promotion of H2A histone gene transcriptionin vivo. Proc Natl Acad Sci USA 77:7102–7106

    PubMed  Google Scholar 

  • Grosschedl R, Machler M, Rohrer U, Birnstiel ML (1983) A functional component of the sea urchin H2A gene modulator contains an extended sequence homology to vival enhancer. Nucleic Acids Res 11:8123–8136

    PubMed  Google Scholar 

  • Grunstein M, Schedl P, Kedes L (1975) Sequence analysis and evolution of sea urchin (Lytechinus pictus andStrongylocentrotus purpuratus) histone H4 messenger RNAs. J Mol Biol 104:323–349

    Article  Google Scholar 

  • Grunstein M, Diamond KE, Koppel E, Grunstein J (1981) Comparison of the early histone H4 gene sequence and late histone H4 mRNA sequences. Biochemistry 20:1216–1223

    Article  PubMed  Google Scholar 

  • Hentschel C, Birnstiel M (1981) The organization and expression of histone gene families. Cell 25:301–313

    Article  PubMed  Google Scholar 

  • Hohn B, Murray K (1977) Packaging recombinant DNA molecules into bacteriophage particlesin vitro. Proc Natl Acad Sci USA 74:3259–3263

    PubMed  Google Scholar 

  • Joseph DR, Stafford DW (1976) Purification of sea urchin ribosomal RNA genes with a single-strand specific nuclease. Biochim Biophys Acta 418:167–174

    PubMed  Google Scholar 

  • Kedes LH (1979) Histone genes and histone messengers. Annu Rev Biochem 48:837–870

    Article  PubMed  Google Scholar 

  • Krietman M (1983) Nucleotide polymorphism at the alcohol dehydrogenase locus ofDrosophila melanogaster. Nature 304: 412–417

    Article  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) In: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 117–119

    Google Scholar 

  • Mauron A, Levy S, Childs G, Kedes LH (1981) Monocistronic transcription is the physiological mechanism of sea urchin embryonic histone gene expression. Mol Cell Biol 1:661–671

    PubMed  Google Scholar 

  • Maxam AH, Gilbert W (1980) Sequencing end labeled DNA with base-specific chemical cleavages. Methods Enzymol 65: 499–560

    PubMed  Google Scholar 

  • Maxson R, Mohun T, Cohn R, Kedes L (1983a) Expression and organization of histone genes. Annu Rev Genet 17:237–277

    Article  Google Scholar 

  • Maxson R, Mohun T, Gormezano G, Childs G, Kedes L (1983b) Distinct organizations and patterns of expression of early and late histone gene sets in the sea urchin. Nature 301:120–125

    Article  PubMed  Google Scholar 

  • Orkin SH, Kazazian HH Jr, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Waber PG, Glardina PJV (1982) Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster. Nature 296:627–631

    Article  PubMed  Google Scholar 

  • Overton C, Weinberg E (1978) Length and sequence heterogeneity of the histone gene repeat unit of the sea urchin,S. purpuratus. Cell 14:247–257

    Article  PubMed  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    Article  PubMed  Google Scholar 

  • Petes TD, Botstein D (1977) Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast. Proc Natl Acad Sci USA 74:5091–5095

    PubMed  Google Scholar 

  • Poncz M, Schwartz E, Ballantine M, Surrey S (1983) Nucleotide sequence analysis of the β-globin gene region in humans. J Biol Chem 258:11599–11609

    PubMed  Google Scholar 

  • Ripley LS (1982) Model for the participation of quasipalindromic DNA sequences in frameshift mutation. Proc Natl Acad Sci USA 79:4128–4132

    PubMed  Google Scholar 

  • Scherer S, Davis RW (1980) Recombination of dispersed repeated DNA sequences in yeast. Science 209:1380–1384

    PubMed  Google Scholar 

  • Smith GP (1974) Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symp Quant Biol 38: 507–513

    PubMed  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    PubMed  Google Scholar 

  • Stafford DW, Bieber D (1975) Concentration of DNA solutions by extraction with 2-butanol. Biochim Biophys Acta 378: 18–21

    PubMed  Google Scholar 

  • Streisinger G (1966) Frameshift mutations and the genetic code. Cold Spring Harbor Symp Quant Biol 31:77–84

    PubMed  Google Scholar 

  • Sures I, Lowry J, Kedes LH (1978) The DNA sequence of sea urchin (S. purpuratus) H2A, H2B and H3 histone coding and spacer regions. Cell 15:1033–1044

    Article  PubMed  Google Scholar 

  • Sures I, Levy S, Kedes LH (1980) Leader sequences ofStrongylocentrotus purpuratus histone mRNAs start at a unique heptanucleotide common to all five histone genes. Proc Natl Acad Sci USA 77:1265–1269

    PubMed  Google Scholar 

  • Templeton AR, DeSalle R, Walbot V (1981) Speciation and inferences on rates of molecular evolution from genetic distances. Heredity (Edinburgh) 47:439–442

    Google Scholar 

  • Thomas M, Cameron JR, Davis RW (1974) Viable molecular hybrids of bacteriophage lambda and eukaryotic DNA. Proc Natl Acad Sci USA 71:4579–4583

    PubMed  Google Scholar 

  • Ullrich A, Dull TJ, Gray A, Phillips JA, Peter S (1982) Variation in the sequence and modification state of the human insulin gene flanking regions. Nucleic Acids Res 10:2225–2240

    PubMed  Google Scholar 

  • Weinberg ES, Birnstiel ML, Purdom IF, Williamson R (1972) Genes coding for polysomal 9S RNA of sea urchins: conservation and divergence. Nature 240:225–228

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yager, L.N., Kaumeyer, J.F. & Weinberg, E.S. Evolving sea urchin histone genes-nucleotide polymorphisms in the H4 gene and spacers ofStrongylocentrotus purpuratus . J Mol Evol 20, 215–226 (1984). https://doi.org/10.1007/BF02104728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02104728

Key words

Navigation