Skip to main content
Log in

Physical map of a 257 kilobase-pairs region from the genome of the archaebacteriumHalococcus saccharolyticus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We report here the first available data on the genomic structure of an archaebacterial, extremely halophilic coccus. Thus, the physical map of a region of 257 kilobase-pairs (kbp) from the extremely halophilic aerobic archaebacteriumHalococcus saccharolyticus ATCC 49257 has been constructed. This DNA fragment could be ascribed to the FI fraction of the chromosome. Long repeated sequences were not detected, but, on the other hand, some losses of fragments in the recombinants were found. These data suggest that only a minor part of the chromosome ofH. saccharolyticus, which is not cccDNA, is accompanied by multiple rearrangements, while the other, which includes most of the chromosome, possesses more genetic stability. Our results indicate that there is a low degree of genomic variability in contrast to the high instability reported forHalobacterium salinarium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Charlebois RL, Hofman JD, Schalwyk LC, Lam WL, Doolittle WF (1988) Genome mapping in halobacteria. Can J Microbiol 25:21–29

    Google Scholar 

  2. Cline SW, Doolittle WF (1987) Efficient transfection of the archaebacteriumHalobacterium halobium. J Bacteriol 169:1341–1344

    PubMed  Google Scholar 

  3. Cline SW, Lam VL, Charlebois RL, Schalwyk LC, Doolittle WF (1989) Transformation methods for halophilic archabacteria. Can J Microbiol 35:148–152

    PubMed  Google Scholar 

  4. Cline SW, Schalwyk LC, Doolittle WF (1989) Transformation of the archaebacteriumHalobacterium volcanii with genomic ADN. J Bacteriol 171:4987–4991

    PubMed  Google Scholar 

  5. Ebert K, Goebel W (1985) Conserved and variable regions in the chromosomal and extrachromosomal DNA of halobacteria. Mol Gen Genet 200:96–102

    Article  Google Scholar 

  6. Grant WD, Larsen H (1989) Group III: Extremely halophilic archaebacteria. Order Halobacteriales ord. nov. In: Staley JT, Bryant MP, Pfenning N, Holt JG (eds) Bergey's Manual of Systematic Bacteriology, vol III. Baltimore: Williams and Wilkins Co, pp 2216–2219

    Google Scholar 

  7. Holmes ML, Dyall-Smith ML (1990) A plasmid vector with a selectable marker for halophilic archaebacteria. J Bacteriol 172:756–761

    PubMed  Google Scholar 

  8. Holmes ML, Dyall-Smith ML (1991) Mutations in the DNA gyrase result in novobiocin resistance in halophilic archaebacteria. J Bacteriol 173:642–648

    PubMed  Google Scholar 

  9. Joshi JG, Guild WR, Handler P (1963) The presence of two species of DNA in some halobacteria. J Mol Biol 6:34–38

    Google Scholar 

  10. Juez G, Rodriguez-Valera F, Herrero N, Mojica FJM (1991) Evidence for salt-associated restriction pattern modifications in the archaeobacteriumHaloferax mediterranei. J Bacteriol 172:7278–7281

    Google Scholar 

  11. Konig H, Stetter KO (1989) Archaebacteria. In: Staley JT, Bryant MP, Pfenning N, Holt JG (eds) Bergey's Manual of Systematic Bacteriology, vol III. Baltimore: Williams and Wilkins Co, pp 2171–2173

    Google Scholar 

  12. Kuhn I, Stephenson FH, Boyer HW, Greene PJ (1986) Positive selection vectors using lethality of theEcoR1 endonuclease. Gene 44:253–263

    Article  Google Scholar 

  13. Leffers H, Gropp F, Lottspeich F, Zillig W, Garret A (1989) Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophilesHalobacterium halobium andHalococcus morrhuae. J Mol Evol 206:1–17

    Google Scholar 

  14. Maniatis T, Fritsh EF, Sambrook J (1982) Molecular cloning, a laboratory manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  15. Mevarech M, Werczberger R (1985) Genetic transfer inHalobacterium volcanii. J Bacteriol 169:1341–1344

    Google Scholar 

  16. Montero CG, Ventosa A, Nieto JJ, Ruiz-Berraquero F (1988) Isolation and partial characterization of a plasmid in the extremely halophilic archaebacteriumHalococcus morrhuae CCM 537. J Gen Microbiol 134:2959–2963

    Google Scholar 

  17. Montero CG, Ventosa A, Rodriguez-Valera F, Ruiz-Berraquero F (1988) Taxonomic study of non-alkaliphilic halococci. J Gen Microbiol 134:725–732

    Google Scholar 

  18. Montero CG, Ventosa A, Rodriguez-Valera F, Kates M, Moldoveanu N, Ruiz-Berraquero F (1989)Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst Appl Microbiol 12:167–171

    Google Scholar 

  19. Moore RL, McCarthy BJ (1969) Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria J Bacteriol 99:248–254

    PubMed  Google Scholar 

  20. Nieuwlandt DT, Daniels CJ (1991) An expression vector for the archaebacteriumHaloferax volcanii. J Bacteriol 172:7104–7110

    Google Scholar 

  21. Nilsson B, Uhlen M, Josephson S, Gotenbeck S, Philipson L (1983) An improved positive selection plasmid vector constructed by oligonucleotide mediated mutagenesis. Nucleic Acids Res 11:8019–8030

    PubMed  Google Scholar 

  22. Pfeifer F (1988) Genetics of halobacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol II. Boca Raton: CRC Press, pp 105–133

    Google Scholar 

  23. Pfeifer F, Betlach M (1985) Genome organization inHalobacterium halobium. A 70 Kb island of more (A+T) rich DNA in the chromosome. Mol Gen Genet 98:449–455

    Article  Google Scholar 

  24. Sapienza C, Doolittle WF (1982) Unusual physical organization of theHalobacterium genome. Nature 295:384–389

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montero, C.G., Ventosa, A., Nieto, J.J. et al. Physical map of a 257 kilobase-pairs region from the genome of the archaebacteriumHalococcus saccharolyticus . Current Microbiology 23, 299–302 (1991). https://doi.org/10.1007/BF02104129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02104129

Keywords

Navigation