Skip to main content
Log in

Mitochondrial DNA evolution in theDrosophila nasuta subgroup of species

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

TheDrosophila nasuta group consists of about 12 closely related species distributed throughout the Indo-Pacific region. They are of great interest because of their evolutionary idiosyncrasies including little morphological differentiation, the ability to intercross in the laboratory often producing fertile offspring, and substantial chromosomal evolution. Studies of metric traits, reproductive isolation, and chromosomal and enzyme polymorphisms have failed to resolve the phylogeny of the species. We report the results of a survey of the mitochondrial DNA (mtDNA) restriction patterns of the species. The phylogeny obtained is consistent with other available information and suggests thatD. albomicans may represent the ancestral lineage of the group. The amount of polymorphism in local populations (π=1.0% per site) is within the typical range observed in other animals, includingDrosophila. The degree of differentiation between species is, however, low: the origin of the group is tentatively dated about 6–8 million years ago. This study confirms the usefulness of mtDNA restriction patterns for ascertaining the phylogeny of closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103:287–312

    PubMed  Google Scholar 

  • Avise JC, Lansman RA (1983) Polymorphism of mitochondrial DNA in populations of higher animals. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland MA, pp 147–164

    Google Scholar 

  • Avise JC, Lansman RA, Shade RO (1979) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genusPeromyscus. Genetics 92:279–295

    PubMed  Google Scholar 

  • Avise JC, Bermingham B, Kessler LG, Saunders NC (1984) Characterization of mitochondrial DNA variability in a hybrid swarm between subspecies of bluegill sunfish (Lepomis macrochirus). Evolution 38:931–941

    Google Scholar 

  • Avise JC, Helfman GS, Saunders NC, Stanton Hales L (1986) Mitochondrial DNA differentiation in North Atlantic eels: population genetic consequences of an unusual life history pattern. Proc Natl Acad Sci USA 83:4350–4354

    Google Scholar 

  • Baba-Aissa, Solignac M (1984) La plupart des populations deDrosophila simulans ont probablement pour ancetre un femelle unique dans un passe recent. CR Seances Acad Sci 299: 289–292

    Google Scholar 

  • Boursot P, Bonhomme F (1986) Genetique et evolution du genome mitochondrial des metazoaires. Genet Sel Evol 18: 73–98

    Google Scholar 

  • Brown WM (1980) Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci USA 77:3605–3609

    PubMed  Google Scholar 

  • Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland MA, pp 62–88

    Google Scholar 

  • Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 95–130

    Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    PubMed  Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36

    PubMed  Google Scholar 

  • Chang H (1984) Study of hybridization and phylogenetic relationship between a pair of sibling species,Drosophila nasuta Lamb andD. albomicans Duda. Dissertation, University of California, Davis CA

    Google Scholar 

  • Cherry LM, Case SM, Wilson AC (1978) Frog perspective on the morphological difference between humans and chimpanzees. Science 200:209–211

    PubMed  Google Scholar 

  • Coen ES, Thoday JM, Dover G (1982) Rate of turnover of structural variants in the rDNA gene family ofDrosophila melanogaster. Nature 195:564–568

    Google Scholar 

  • David JR, Tsacas L (1980) Cosmopolitan, subcosmopolitan and wide-spread species: different strategies within the drosophilid family (Diptera). CR Seances Soc Biogeogr 57:11–26

    Google Scholar 

  • DeSalle R, Val Giddings L, Kaneshiro KY (1986) Mitochondrial DNA variability in natural populations of HawaiianDrosophila. II. Genetic and phylogenetic relationships of natural populations ofD. silvestris andD. heteroneura. Heredity 56: 87–96

    PubMed  Google Scholar 

  • Felsenstein J (1984) Distance methods for inferring phylogenies: a justification. Evolution 38:16–24

    Google Scholar 

  • Hale LR, Beckenbach AT (1985) Mitochondrial DNA variation inDrosophila pseudoobscura and related species in Pacific Northwest populations. Can J Genet Cytol 27:357–364

    PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    PubMed  Google Scholar 

  • Kanapi CG, Wheeler MR (1970) Comparative isozyme patterns in three species of theDrosophila nasuta complex. Texas Rep Biol Med 28:261–278

    Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels: molecular similarities and biological differences between humans and chimpanzees. Science 188:107–116

    PubMed  Google Scholar 

  • Kitagawa O, Wakahama K, Fuyama Y, Shimada Y, Takanashi E, Hatsumi M, Uwabo M, Mita Y (1982) Genetic studies of theDrosophila nasuta subgroup, with notes on distribution and morphology. Jpn J Genet 57:113–141

    Google Scholar 

  • Lamb CG (1914) Diptera: Heteroneuridae, Ortalidae, Trypetidae, Sepsidae, Micropezidae, Drosophilidae, Geomyzidae, Milichiidae of the Seychelles. Trans Linn Soc London 16: 307–372

    Google Scholar 

  • Lansman RA, Shade RO, Shapira JF, Avise JC (1981) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. J Mol Evol 17: 214–226

    PubMed  Google Scholar 

  • Latorre A, Moya A, Ayala FJ (1986) Evolution of mitochondrial DNA inDrosophila subobscura. Proc Natl Acad Sci USA 83:8649–8653

    Google Scholar 

  • Latorre A, Barrio E, Moya A, Ayala FJ (1988) Mitochondrial DNA evolution in theDrosophila obscura group. Mol Biol Evol 50:717–728

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Nei M (1982) Evolution of human races at the gene level. In: Bonne-Tamir B, Cohen P, Goodman M (eds) Part A: the unfolding genome. Alan R Liss, New York, pp 167–181

    Google Scholar 

  • Nei M (1985) Human evolution at the molecular level. In: Ohta T, Aoki K (eds) Population genetics and molecular evolution. Japan Scientific Societies Press, Tokyo, pp 41–64

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    PubMed  Google Scholar 

  • Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163

    PubMed  Google Scholar 

  • Nirmala SS, Krishnamurthy NB (1973)Drosophila neonasuta, a new species ofDrosophila from Mysore (Diptera: Drosophilidae). Orient Insects 7:267–270

    Google Scholar 

  • Nirmala SS, Krishnamurthy NB (1974) Endophenotypic variability in natural populations ofDrosophila nasuta. Egypt J Genet Cytol 3:211–228

    Google Scholar 

  • Okada T, Carson H (1982) Drosophilidae associated with flowers in Papua, New Guinea. III. Zingiberales. Kontyu, Tokyo 50:396–410

    Google Scholar 

  • Powell JR, Caccone A, Amato GD, Yoon C (1986) Rates of nucleotide substitution inDrosophila mitochondrial DNA and nuclear DNA are similar. Proc Natl Acad Sci USA 83:9090–9093

    PubMed  Google Scholar 

  • Ramachandra NB, Ranganath HA (1985) Supernumerary chromosomes inDrosophila nasuta albomicana. Experientia 41: 680–681

    PubMed  Google Scholar 

  • Ramachandra NB, Ranganath HA (1985) The chromosomes of twoDrosophila races:D. nasuta nasuta andD. nasuta albomicand. Chromosome 93:243–248

    Google Scholar 

  • Saunders NC, Kessler LG, Avise JC (1986) Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab,Limulus polyphemus. Genetics 112:613–627

    Google Scholar 

  • Solignac M, Monnerot M, Mounolou JC (1986) Mitochondrial DNA evolution in theMelanogaster species subgroup ofDrosophila. J Mol Evol 23:31–40

    PubMed  Google Scholar 

  • Spieth HT (1969) Courtship and mating behavior of theDrosophila nasuta subgroup of species. Univ Texas Publ 6918: 255–270

    Google Scholar 

  • Takahata N, Palumbi SR (1985) Extranuclear differentiation and gene flow in the finite island model. Genetics 109:441–457

    Google Scholar 

  • Upholt WB (1977) Estimation of DNA sequence divergence from comparison of restriction endonuclease digests. Nucleic Acids Res 4:1257–1265

    PubMed  Google Scholar 

  • Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196

    PubMed  Google Scholar 

  • Wilson FD, Wheeler MR, Harget M, Kambysellis M (1969) Cytogenetic relations in theDrosophila nasuta subgroup of theimmigrans group of species. Univ Texas Publ 6918:207–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Hy., Wang, D. & Ayala, F.J. Mitochondrial DNA evolution in theDrosophila nasuta subgroup of species. J Mol Evol 28, 337–348 (1989). https://doi.org/10.1007/BF02103430

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02103430

Key words

Navigation