Skip to main content
Log in

Nucleotide sequence of a DNA region comprising the gene for elongation factor 1α (EF-1α) from the ultrathermophilic archaeotePyrococcus woesei: Phylogenetic implications

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The gene encoding elongation factor 1α (EF-1α, 1290 bp) of the ultrathermophilic, sulfur-reducing archaeotePyrococcus woesei was localized within aBglII fragment of chromosomal DNA. Sequence analysis showed that the EF-1α gene is the upstream unit of a three-gene cluster comprising the genes for ribosomal protein S10 (306 bp) and transfer RNAser (GGA). The three genes follow each other immediately in the order EF-1α·S10·tRNAser after a putative promoter located 55 bp upstream of the EF-1α gene. Alignment of the derived EF-1α sequence with the corresponding sequences from Eukarya, Bacteria/organelles, and with available archaeal sequences (Sulfolobus, Thermococcus, Methanococcus, Halobacterium) showed thatPyrococcus EF-1α is highly homologous (89% identity) toThermococcus celer EF-1α, both being strikingly more similar to eukaryotic EF-1α than to bacterial EF-Tu. Unrooted dendrograms computed from aligned sequences by distance matrix and DNA parsimony methods, including evolutionary parsimony, showed the Archaea to be a monophyletic-holophyletic cluster closer to Eukarya than to Bacteria. Both distance matrix and DNA parsimony-although not evolutionary parsimony-support the partition of the known archaeal lineages between the kingdoms Crenarchaeota and Euryarchaeota, and the affiliation of thePyrococcus-Thermococcus lineage to the Euryarchaeota, of which it is the most primitive offspring. A closer relation ofPyrococcus to Euryarchaeota than to Crenarchaeota was also inferred from sequence analysis of S10 ribosomal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai K, Clark BFC, Duffy L, Jones MD, Kaziro Y, Laursen RA, L'Italien J, Miller DL, Nagarkatti S, Nakamura S, Nielsen KM, Petersen TE, Takahashi K, Wade M (1980) Primary structure of the elongation factor Tu fromEscherichia coli. Proc Natl Acad Sci USA 77:1326–1330

    PubMed  Google Scholar 

  • Auer J, Lechner K, Böck A (1989) Gene organization and structure of two transcriptional units fromMethanococcus coding for ribosomal proteins and elongation factors. Can J Microbiol 35:200–204

    PubMed  Google Scholar 

  • Auer J, Spicker G, Böck A (1990) Nucleotide sequence of the gene for elongation factor EF-1α from the extreme thermophilic archaebacteriumThermococcus celer. Nucleic Acids Res 18:3989

    PubMed  Google Scholar 

  • Auer J, Spicker G, Mayerhofer L, Pühler G, Böck A (1991) Organisation and nucleotide sequence of a gene cluster comprising the translation elongation factor EF-1α fromSulfolobus acidocaldarius. Syst Appl Microbiol 14:14–22

    Google Scholar 

  • Bachleitner M, Ludwig W, Stetter KO, Schleifer KH (1989) Nucleotide sequence of the gene coding for the elongation factor Tu of the extremely thermophilic eubacteriumThermotoga maritima. FEMS Microbiol Lett 57:115–120

    Google Scholar 

  • Baldacci G, Guinet F, Tillit J, Zaccai G, Recondo AM (1990) Functional implications related to the gene structure of the elongation factor EF-Tu fromHalobacterium marismortui. Nucleic Acids Res 18:507–511

    PubMed  Google Scholar 

  • Blin N, Stafford DW (1976) A general method for the isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3:2303–2308

    PubMed  Google Scholar 

  • Brands JHGM, Maasen JA, Van Hemert FJ, Amons R, Moeller W (1986) The primary structure of the α subunit of human elongation factor 1α. Structural aspects of guanine-nucleotide-binding sites. Eur J Biochem 155:167–171

    PubMed  Google Scholar 

  • Brown JW, Daniels CJ, Reeve JN (1989) Gene structure, organization and expression in archaebacteria. CRC Crit Rev Microbiol 16:287–338

    Google Scholar 

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: a high efficiency plasmid transforming recAEscherichia coli strain with β-galactosidase selection. Biotechniques 5:376

    Google Scholar 

  • Buttarelli FR, Calogero RA, Tiboni O, Gualerzi CO, Pon CL (1989) Characterization of thestr operon genes fromSpirulina platensis and their evolutionary relationships to those of other prokaryotes. Mol Gen Genet 217:97–104

    PubMed  Google Scholar 

  • Cammarano P, Tiboni O, Sanangelantoni AM (1989) Phylogenetic conservation of antigenic determinants in archaebacterial elongation factors Tu. Can J Microbiol 31:1–7

    Google Scholar 

  • Devereux I, Haeberli P, Smithies O (1984) A comprehensive set of sequence analyses program for the VAX. Nucleic Acids Res 12:387–395

    PubMed  Google Scholar 

  • Felsenstein J (1984) The statistical approach to inferring evolutionary trees and what it tells us about parsimony and compatibility. In: Ducan T, Stuessy TF (eds) Cladistics: perspectives in the reconstruction of evolutionary history. Columbia University Press, New York, pp 169–191

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 15:279–284

    Google Scholar 

  • Haveman B, Richter S, Walldorf U, Ziepluch C (1988) Two genes encode related cytoplasmic elongation factors 1-α (EF-1) inDrosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res 16:3175–3194

    PubMed  Google Scholar 

  • Holmquist R, Miyamoto MM, Goodman M (1988) Analysis of higher primate phylogeny from transversion differences in nuclear and mitochondrial DNA by Lake's method of evolutionary parsimony and operator metrics. Mol Biol Evol 5: 217–236

    PubMed  Google Scholar 

  • Iwabe N, Kuma KI, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359

    PubMed  Google Scholar 

  • Jaskunas SR, Fallon AM, Nomura M (1977) Identification and organization of ribosomal protein genes ofEscherichia coli carried by thefus2 transducing phage. J Biol Chem 252:7323–7336

    PubMed  Google Scholar 

  • Kjems J, Garrett RA, Ansorge W (1987) The sequence of the 16S RNA gene and its flanking region from the archaebacteriumDesulfurococcus mobilis. Syst Appl Microbiol 9: 22–28

    Google Scholar 

  • Kushiro A, Shimizu M, Tomita K (1987) Molecular cloning and sequence determination of thetuf gene coding for the elongation factor Tu ofThermus thermophilus. Eur J Biochem 170:93–98

    PubMed  Google Scholar 

  • Lake JA (1987a) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191

    PubMed  Google Scholar 

  • Lake JA (1987b) Determining evolutionary distances from highly diverged nucleic acid sequences: operator metrics. J Mol Evol 26:59–73

    PubMed  Google Scholar 

  • Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331: 184–186

    PubMed  Google Scholar 

  • Lechner K, Böck A (1987) Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. Mol Gen Genet 208:523–528

    Google Scholar 

  • Lechner K, Heller G, Böck A (1988) Gene for the diphtheria toxin-susceptible elongation factor 2 fromMethanococcus vannielii. Nucleic Acids Res 16:7817–7826

    PubMed  Google Scholar 

  • Leffers H, Kjems J, Ostergaard L, Larsen N, Garrett RA (1987) Evolutionary relationships amongst archaebacteria: a comparative study of 23S rRNAs of a sulfur-dependent extreme thermophile, extreme halophile and a thermophilic methanogen. J Mol Biol 195:43–61

    Google Scholar 

  • Leinfelder W, Jarsch M, Böck A (1985) The phylogenetic position of the sulfur-dependent archaebacteriumThermoproteus tenax: sequence of the 16S rRNA gene. Syst Appl Microbiol 6:164–170

    Google Scholar 

  • Lenstra JA, Vliet AV, Arnberg AC, Van Hemert FJ, Moller W (1986) Genes coding for the elongation factor EF-1α inArtemia salina. Eur J Biochem 155:475–483

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY

    Google Scholar 

  • Mizusawa S, Nishimura S, Seela F (1986) Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res 14:1319–1324

    PubMed  Google Scholar 

  • Montandon PE, Stutz E (1980)Euglena gracilis gene coding for the translation elongation factor EF-1α. Nucleic Acids Res 18:75–82

    Google Scholar 

  • Montandon PE, Stutz E (1983) Nucleotide sequence of aEuglena gracilis chloroplast genome region coding for the elongation factor Tu; evidence for a spliced mRNA. Nucleic Acids Res 11:5877–5892

    PubMed  Google Scholar 

  • Nagata S, Tsunetsugu-Yokota Y, Naito A, Kaziro Y (1983) Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu ofSaccharomyces cerevisiae. Proc Natl Acad Sci USA 80:6192–6196

    PubMed  Google Scholar 

  • Nagata S, Nagashima K, Tsunetsugu-Yokota Y, Fujimura K, Miyazaki M, Kaziro Y (1984) Polypeptide chain elongation factor 1α (EF-1α) from yeast: nucleotide sequence of one of the two genes for EF-1α fromSaccharomyces cerevisiae. EMBO J 3:1825–1830

    PubMed  Google Scholar 

  • Ohama T, Yamao A, Muto A, Osawa S (1987) Organization and codon usage of the streptomycin operon inMicrococcus luteus; a bacterium with a high genomic G+C content. J Bacteriol 169:4770–4777

    PubMed  Google Scholar 

  • Olsen GJ, Pace NR, Nuell M, Kaine BP, Gupta R, Woese CR (1985) Sequence of the 16S rRNA gene from the thermoacidophilic archaebacteriumSulfolobus solfataricus and its evolutionary implications. J Mol Evol 22:301–307

    PubMed  Google Scholar 

  • Post LE, Nomura M (1980) DNA sequences from thestr operon ofEscherichia coli. J Biol Chem 255:4660–4666

    PubMed  Google Scholar 

  • Pühler G, Leffers H, Gropp F, Palm P, Klenk HP, Lottspeich F, Garrett R, Zillig W (1989) Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc Natl Acad Sci USA 86:4569–4573

    PubMed  Google Scholar 

  • Reiter WD, Palm P, Zillig W (1988) Transcription termination in the archaebacteriumSulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res 16:2445–2459

    PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    PubMed  Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    PubMed  Google Scholar 

  • Tiboni O, Sanangelantoni AM, Cammarano P (1989) Immunochemical cross-reactivities of protein synthesis elongation factors (EF-Tu and EF-1α proteins) support the phylogenetic coherence of archaebacteria. Syst Appl Microbiol 12:127–133

    Google Scholar 

  • Tiboni O, Cantoni R, Creti R, Cammarano P, Sanangelantoni AM (1991) Phylogenetic depth ofThermotoga maritima inferred from analysis of thefus gene. Amino acid sequence of elongation factor G and organization of theThermotoga str operon. J Mol Evol (in press)

  • Vieira J, Messing J (1982) The pUC plasmids and M13mp7-derived system for insertion, mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis M (1990) Towards a natural system of organisms: proposal for the domains of Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    PubMed  Google Scholar 

  • Woolley PC, Clark BFC (1989) Homologies in the structures of G-binding proteins: an analysis based on elongation factor Tu. Biotechnology 7:913–920

    Google Scholar 

  • Zillig W, Holz I, Klenk HP, Trent J, Wunderl S, Janekovic D, Imsel E, Haas B (1987)Pyrococcus woesei, sp. nov., an ultrathermophilic marine archaebacterium representing a novel order,Thermococcales. Syst Appl Microbiol 9:62–70

    Google Scholar 

  • Zillig W, Palm P, Klenk HP, Puhler G, Gropp F, Schleper C (1991) Phylogeny of DNA-dependent RNA polymerases: testimony for the origin of eukaryotes. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum, New York (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creti, R., Citarella, F., Tiboni, O. et al. Nucleotide sequence of a DNA region comprising the gene for elongation factor 1α (EF-1α) from the ultrathermophilic archaeotePyrococcus woesei: Phylogenetic implications. J Mol Evol 33, 332–342 (1991). https://doi.org/10.1007/BF02102864

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102864

Key words

Navigation