Skip to main content
Log in

Conformal field algebras with quantum symmetry from the theory of superselection sectors

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

According to the theory of superselection sectors of Doplicher, Haag, and Roberts, field operators which make transitions between different superselection sectors—i.e. different irreducible representations of the observable algebra—are to be constructed by adjoining localized endomorphisms to the algebra of local observables. We find the relevant endomorphisms of the chiral algebra of observables in the minimal conformal model with central chargec=1/2 (Ising model). We show by explicit and elementary construction how they determine a representation of the braid groupB which is associated with a Temperley-Lieb-Jones algebra. We recover fusion rules, and compute the quantum dimensions of the superselection sectors. We exhibit a field algebra which is quantum group covariant and acts in the Hilbert space of physical states. It obeys local braid relations in an appropriate weak sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wick, G.G., Wigner, E.P., Wightman, A.S.: Intrinsic parity of elementary particles, Phys. Rev.88, 101 (1952)

    Google Scholar 

  2. Haag, R., Kastler, D.: An algebraic approach to field theory. M. Math. Phys.5, 848 (1964)

    Google Scholar 

  3. Doplicher, S., Haag, R., Roberts, J.E.: Local observables and particle statistics I, II. Commun. Math. Phys.23, 199 (1971) and35, 49 (1974)

    Google Scholar 

  4. Takesaki, H., Winnik, W.: Local normality in quantum statistical mechanics. Commun. Math. Phys.30, 129 (1973)

    Google Scholar 

  5. Buchholz, D., Mack, G., Todorov, I.T.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B (Proc. Suppl.)5B, 20 (1988)

    Google Scholar 

  6. Pressley, A., Segal, G.: Loop groups. Oxford: Oxford Science Publications 1986

    Google Scholar 

  7. Rehren, K.H., Schroer, B.: Einstein causality and artin braids. Nucl. Phys.B 312, 715 (1989) Rehren, K.H.: Locality of conformal fields in two dimensions. Exchange algebras on the light cone. Commun. Math. Phys.116, 675 (1988)

    Google Scholar 

  8. Fredenhagen, K., Rehren, K.H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras, I: General theory. Commun. Math. Phys.125, 201–226 (1989)

    Google Scholar 

  9. Fredenhagen, K., Rehren, K.H., Schroer, B.: As reported in B. Schroer: New kinematics (statistics and symmetry) in low-dimensionalQFT with applications to conformalQFT 2, to be published in Proc. VXIIth Int. Conf. on Differential Geometric Methods in Theoretical Physics, 1989

  10. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operators and the monster. New York: Academic Press 1988

    Google Scholar 

  11. Fröhlich, J., Gabbiani, F., Marchetti, P.A.: Superselection structure and statistics in three-dimensional local quantum theory, preprint ETH-TH/89-22

  12. Fröhlich, J., Gabbiani, F., Marchetti, P.A.: Braid statistics in three-dimensional local quantum theory, ETH-TH/89-36, to be publ. in Proceedings “Physics, Geometry, and Topology,” Banff 1989

  13. Fredenhagen, K.: Structure of superselection sectors in low-dimensional quantum field theory, to be publ. in: XVII International conference on Differential Geometric Methods in Theoretical Physics: Physics and Geometry, Davis 1989

  14. Doplicher, S., Roberts, J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, June 1989

  15. Doplicher, S., Roberts, J.E.:C *-algebras and duality for compact groups: Why there is a compact group of internal gauge symmetries in particle physics. In: VIIIth International Congress on Mathematical Physics, Marseille 1986, Mebkhout, M., Sénéor, R. (eds.)

  16. Doplicher, S., Roberts, J.E.: Endomorphisms ofC *-algebras, cross products and duality for compact groups. Ann. Math. (to appear)

  17. Drinfel'd, V.G.: Quantum groups. Proc. ICM 798 (1987)

  18. Fröhlich, J.: Statistics of fields, the Yang-Baxter equation and the theory of knots and links. In: Nonperturbative quantum field theory. t'Hooft, G. et al. (eds.). New York: Plenum Press 1988

    Google Scholar 

  19. Moore, G., Reshetikhin, N.: A comment on quantum symmetry in conformal field theory. Nucl. Phys. B328, 557 (1989)

    Google Scholar 

  20. Buchholz, D., Mack, G., Todorov, I.T.: As reported in I. Todorov. In: Proceedings of Conf. on Quantum Groups, Clausthal Zellerfeld, July 1989

  21. Alvarez-Gaumé, L., Gomez, C., Sierra, G.: Hidden quantum symmetry in rational conformal field theories. Nucl. Phys. B310 (1989)

  22. Alvarez-Gaumé, L., Gomez, C., Sierra, G.: Quantum group interpretation of some conformal field theories. Phys. Lett.220B, 142 (1989)

    Google Scholar 

  23. Alvarez-Gaumé, L., Gomez, C., Sierra, G.: Duality and quantum groups, CERN-TH-5369/89

  24. Felder, G., Fröhlich, J., Keller, G.: On the structure of unitary conformal field theory II: Representation theoretic approach ETH-TH/89-12

  25. Tsuchiya, A., Kanie, Y.: Vertex operators in the conformal field theory ofP 1 and monodromy representations of the braid group. Lett. Math. Phys.13, 303 (1987)

    Google Scholar 

  26. Temperley, H., Lieb, E.: Relation between the percolation and the colouring problem. Proc. Roy. Soc. (London) 251 (1971)

  27. Jones, V.: Index for subfactors. Invent. Math.72, 1 (1982) and in: Braid group, knot theory and statistical mechanics. Yang, C.N., Ge, M.L. (eds.). Singapore: World Scientific 1989

    Google Scholar 

  28. Hamermesh, N.: Group theory, Reading, MA: Addison Wesley 1962, Chap. 3–17

    Google Scholar 

  29. Lüscher, M., Mack, G.: Global conformal invariance in quantum field theory. Commun. Math. Phys.41, 203 (1975)

    Google Scholar 

  30. Mack, G.: Introduction to conformal invariant quantum field theories in two dimensions. In: Nonperturbative quantum field theory. t'Hooft, G. et al. (eds.). New York: Plenum Press 1988

    Google Scholar 

  31. Schomerus, V.: Diplomarbeit, Hamburg, 1989

  32. Buchholz, D., Schulz-Mirbach, H.: Work in preparation

  33. Gelfand, I.M., Shilov, G.E.: Generalized functions vol. I. New York: Academic Press 1960

    Google Scholar 

  34. Connes, A., Evans, D.E.: Embedding ofU(1)-current algebras of classical statistical mechanics. Commun. Math. Phys.121, 507 (1988)

    Google Scholar 

  35. Longo, R.: Index of subfactors and statistics of quantum fields, I, II. Commun. Math. Phys.126, 217 (1989) and130, 285–309 (1990)

    Google Scholar 

  36. Kirillov, A.N., Reshetikhin, N.: Representations of the algebraU q (sl(2)),q-orthogonal polynomials and invariants of links, preprint LOMIE-9-88, Leningrad 1988

  37. Segal, I.: Causally ordered manifolds and groups. Bull. Am. Math. Soc.77, 958 (1971)

    Google Scholar 

  38. Lusztig, G.: Modular representations of quantum groups. Contemp. Math.82, 59 (1989)

    Google Scholar 

  39. Ganchev, A., Petkova, V.:U q (sl(2)) invariant operators and minimal theories fusion matrices. Trieste preprint, IC/89/158 (June 89)

  40. Pasquier, V.: Etiology of IRF models, Commun. Math. Phys.118, 365 (1988)

    Google Scholar 

  41. Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett.212B, 451 (1988)

    Google Scholar 

  42. Dotsenko, V.S., Fateev, V.A.: Four point correlation functions and the operator algebra in the 2-dimensional conformal quantum field theories with the central chargec<1. Nucl. Phys.B251 [FS 13], 691 (1985)

    Google Scholar 

  43. Dotsenko, V.S., Fateev, V.A.: Conformal algebra and multipoint correlation functions in 2-dimensional statistical models. Nucl. Phys.B240 [FS 12], 312 (1984)

    Google Scholar 

  44. Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theories through quantum groups, submitted to Nucl. Phys. B [FS]

  45. Wenzl, H.: Hecke algebras of typeA n and subfactors. Inv. Math.92, 349 (1988)

    Google Scholar 

  46. Wenzl, H.: Quantum groups and subfactors of type B, C, E. UC San Diego preprint, July 1989

  47. Bouwknegt, P., McCarthy, J., Pilch, K.: Free field realization of WZNW models, BRST complex and its quantum group structure, submitted to Phys. Lett. B (1989)

  48. Fröhlich, J., King, C.: Two-dimensional conformal field theory and 3-dimensional topology, Commun. Math. Phys. (to appear)

  49. Felder, J., Fröhlich, J., Keller, G.: Braid matrices and structure constants for minimal conformal models. Commun. Math. Phys. (to appear)

  50. Mack, G.: Duality in quantum field theory. Nucl. Phys.B118, 445 (1977), esp. p. 456

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mack, G., Schomerus, V. Conformal field algebras with quantum symmetry from the theory of superselection sectors. Commun.Math. Phys. 134, 139–196 (1990). https://doi.org/10.1007/BF02102093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102093

Keywords

Navigation