Skip to main content
Log in

Evolution of the amino acid code: Inferences from mitochondrial codes

  • Original Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The amino acid code is usually presented as a table of 64 codons. Actually the code results from the action of tRNA molecules that carry amino acids to codons in mRNA by means of codon-anticodon pairing. The tRNA molecules are transcribed from genes that undergo evolution and the number of anticodons can therefore increase during evolution, but the number of codons is fixed at 64. Mammalian mitochondrial codes contain only 22 anticodons for 20 amino acids as compared with 54 anticodons for 20 amino acids in the universal code. It is proposed that an archetypal code containing 16 anticodons for 15 amino acids evolved into the universal code by gene duplication, followed by mutations that modified the anticodons and amino acid acceptor sites. In substantiation of this proposal, it is noted that the mammalian mitochondrial code, is simplified by comparison with the universal code. For example, single anticodons are used for each of eight amino acids in the mammalian mitochondrial code. This simplification may represent an evolutionary retrogression towards the proposed archetypal code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–470

    Article  PubMed  Google Scholar 

  • Anderson S, de Brujin MHL, Coulson AR, Eperon, IC, Sanger E, Young IG (1982) The complete sequence of bovine mitochondrial DNA: Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Article  PubMed  Google Scholar 

  • Balasubramanian R (1982) Origin of life: A hypothesis for the origin of adaptor-mediated ordered synthesis of proteins and explanation for the choice of terminating codons in the genetic code. Biosystems 15:99–104

    Article  PubMed  Google Scholar 

  • Barrell BG, Anderson S, Bankier AT, de Bruijn MHL, Chen E, Coulson AR, Drouin, J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1980) Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc Natl Acad Sci USA 77:3164–3166

    PubMed  Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Article  PubMed  Google Scholar 

  • Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FB, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci USA 77:3167–3170

    PubMed  Google Scholar 

  • Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980a) Assembly of the mitochondrial membrane system. J Biol Chem 255:11927–11941

    PubMed  Google Scholar 

  • Coruzzi G, Bonitz SG, Thalenfeld BE, Tzagoloff A (1981) Assembly of the mitochondrial membrane system: Analysis of the nucleotide sequence and transcripts in theoxil regions of yeast mitochondrial DNA. J Biol Chem 256:12780–12787

    PubMed  Google Scholar 

  • Crick FHC (1966) Codon-anticodon pairing: The wobble hypothesis. J Mol Biol 19:548–555

    PubMed  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  PubMed  Google Scholar 

  • Eck RV (1963) Genetic code: Emergence of a symmetrical pattern. Science 140:477–482

    Google Scholar 

  • Fox TD, Leaver CJ (1981) The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell 26:315–323

    Article  PubMed  Google Scholar 

  • Fukada K, Abelson J (1980) DNA sequence of a T4 transfer RNA gene cluster. J Mol Biol 139:377–391

    Article  PubMed  Google Scholar 

  • Groshean HJ, De Henan S, Crothers DM (1978) On the physical basis for ambiguity in genetic coding interactions. Proc Natl Acad Sci (USA) 75:610–614

    Google Scholar 

  • Heckman JE, XX, XXX (1980) Novel features in the genetic code and codon reading patterns inNeurospora crasa mitochondria based on sequences of six mitochondrial tRNAs. Proc Natl Acad Sci USA 77:3159–3163

    PubMed  Google Scholar 

  • Jukes TH (1966) Molecules and Evolution. Columbia, New York

  • Jukes TH (1973) Arginine as a evolutionary intruder into protein synthesis. Biochem Biophys Res Commun 53:704–714

    Article  Google Scholar 

  • Jukes TH (1977) The amino acid code. In: Neuberger A (ed) Comprehensive biochemistry. Vol 24, Biological information transfer. Elsevier/North Holland, Amsterdam, p 235

    Google Scholar 

  • Jukes TH (1981) Amino acid codes in mitochondria as possible clues to primitive codes. J Mol Evol 18:15–16

    Article  PubMed  Google Scholar 

  • Jukes TH, Holmquist R, Moise H (1975) Amino acid composition of proteins: Selection against the genetic code. Science 189:50–51

    PubMed  Google Scholar 

  • Kammen HO, Spengler SJ (1970) The biosynthesis of inosinic acid in transfer RNA. Biochim Biophys Acta 213:352

    PubMed  Google Scholar 

  • Köchel HG, Küntzel H (1982) Mitochondrial L-rRNA fromAspergillus nidulans: Potential secondary structure and evolution. Nucl Acids Res 10:4795–4801

    PubMed  Google Scholar 

  • Köchel HG, Lazarus CM, Basak N, Küntzel H (1981) Mitochondrial tRNA gene clusters in Aspergillus nidulans: Organization and nucleotide sequence. Cell 23:625–633

    Article  PubMed  Google Scholar 

  • Kuchino Y, Watanabe S, Harada F, Nishimura S (1980) Primary structure of AUA-specific isoleucine transfer ribonucleic acid fromEschericia coli. Biochemistry 19:2985–2098

    Article  Google Scholar 

  • Lagerkvist U (1981) Unorthodox codon reading and the evolution of the genetic code. Cell 23:305–306

    Article  PubMed  Google Scholar 

  • Li W-H (1982) Ch. 3 in Evolution of Genes and Proteins (in press)

  • Nishimura S (1972) Minor components in transfer RNA: Their characterization, location and function. Prog Nucl Acid Res Mol Biol 12:49–85

    Google Scholar 

  • Woese CR (1981) Archaebacteria. Sci Am 244:98–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jukes, T.H. Evolution of the amino acid code: Inferences from mitochondrial codes. J Mol Evol 19, 219–225 (1983). https://doi.org/10.1007/BF02099969

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099969

Key words

Navigation