Skip to main content
Log in

Evolution ofDrosophila repetitive-dispersed DNA

  • Original Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We have examined the phylogenetic distribution of a spectrum ofDrosophila repetitive-dispersed DNAs ranging from structurally complex transposable elements to scrambled middle repetitive sequences. Our data suggest that unlike typical “genes” these DNAs are unstable components of the drosophilid genome. The unusual behavior of these repetitive-dispersed DNAs raises the possibility that this type of sequence may have an important role in the evolution of the family Drosophilidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artavanis-Tsakonas S, Schedl P, Mirault ME, Moran L, Lis J (1979) Genes for the 70,000 dalton heat shock protein in two clonedD. melanogaster DNA segments. Cell 17:9–18

    Article  PubMed  Google Scholar 

  • Asburner M, Bonner JJ (1979) The induction of gene activity inDrosophila by heat shock. Cell 17:241–254

    Article  PubMed  Google Scholar 

  • Bingham PM, Kidwell MG, Rubin GM (1982) The molecular basis of P-M hybrid dysgenesis. Cell 29:995–1004

    Article  PubMed  Google Scholar 

  • Bregliano JC, Picard G, Bucheton A, Pelisson A, Lavige JM, Heritier P (1980) Hybrid dysgenesis inD. melanogaster: The inducer-reactive system. Science 207:606–611

    PubMed  Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleosceletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

    PubMed  Google Scholar 

  • Chapman N (1981) A Study of Transposition of Inverted Repeated and Moderately Repetitive Sequences ofDrosophila melanogaster Ph. D. Thesis, Harvard University

  • Crick FHC (1979) Split genes and RNA splicing. Science 204: 264–271

    PubMed  Google Scholar 

  • Dobzhansky T (1941) Genetics and the Origin of Species 2nd ed. Columbia University Press, New York

    Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  Google Scholar 

  • Dover G, Doolittle WF (1980) Modes of genome evolution. Nature 288:646–647

    Article  PubMed  Google Scholar 

  • Engels WR (1981) Hybrid dysgenesis inDrosophila and the stochastic loss hypothesis. Cold Spring Harbor Symp Quant Biol 45:561–565

    PubMed  Google Scholar 

  • Engels WR, Preston CR (1979) Hybrid dysgenesis inDrosophila melanogaster: the biology of female and male sterility. Genetics 92:161–174

    PubMed  Google Scholar 

  • Finnegan DD (1981) Transposable elements and proviruses. Nature 292:800–801

    Article  PubMed  Google Scholar 

  • Finnegan DD, Rubin GM, Young MW, Hogness, DS (1977) Repeated gene families inDrosophila. Cold Spring Harbor Symp Quant Biol 42:1053–1063

    Google Scholar 

  • Flavell AJ, Ish-Horowicz D (1981) Extrachromosomal circular copies of the eukaryotic transposable elementcopia in cultureDrosophila cells. Nature 292:591–595

    Article  PubMed  Google Scholar 

  • Gehring WJ, Paro R (1980) Isolation of a hybrid plasmid with homologous sequences to a transposing element ofDrosophila melanogaster. Cell 19:897–904

    Article  PubMed  Google Scholar 

  • Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genetics 12:101–109

    Google Scholar 

  • Ilyin UV, Chmeliauskaite VG, Kulguskin VV, Georgiev GP (1980) Mobile dispersed genetic element mdgl ofDrosophila melanogaster: transcription pattern. Nucleic Acids Res 8:5347–5362

    PubMed  Google Scholar 

  • Ish-Horowicz D, Pinchin SM, Schedl P, Artavanis-Tsakonas S, Mirault M-E (1979) Genetic and molecular analysis of the 87A7 and 87C1 heat-inducible loci ofD. melanogaster. Cell 18:1351–1358

    Article  PubMed  Google Scholar 

  • Kidwell MG, Kidwell JF, Sved JA (1977) Hybrid dysgenesis inD. melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86: 813–833

    Google Scholar 

  • Didwell MG (1979) Hybrid dysgenesis inD. melanogaster. The relationship between the P-M and I-R interaction systems. Genet Res 33:205–217

    Google Scholar 

  • Laven H (1959) Speciation by cytoplasmic isolation in the pipiens complex. Cold Spring Harbor Symp Quant Biol XXIV:166–173

    Google Scholar 

  • Levis R, Dunsmuir R, Rubin GM (1980) Terminal repeat of theDrosophila transposable element copia: nucleotide sequence and genomic organization. Cell 21:581–588

    Article  PubMed  Google Scholar 

  • Lifton RD, Goldberg ML, Karp RW, Hogness DS (1977) The organization of the histone genes inD. melanogaster: functional and evolutionary implications. Cold Spring Harb Symp Quant Biol 42:1047–1052

    Google Scholar 

  • Lis J, Neckameyer W, Mirault M-E, Artavanis-Tsakonas, S, Lall P, Martin G, Schedl P (1981) DNA sequences flanking the starts of the hap 70 and αβ heat shock genes are homologous. Dev Biol 83:291–300

    Article  PubMed  Google Scholar 

  • Livak KD, Freund R, Schweber M, Wensink PC, Meselson M (1978) Sequence organization and transcription of two shock loci inDrosophila. Proc Natl Acad Sci 75:5613–5617

    PubMed  Google Scholar 

  • Lueders K, Leder A, Leder P, Kuff E (1982) Association between a transposed α-globin pseudogene and retrovirus-like elements in the BALB/c mouse genome. Nature 295:426–428

    Article  PubMed  Google Scholar 

  • Mayr E (1963) Animal Species and Evolution. Harvard Univ. Press, Cambridge, MA

    Google Scholar 

  • Meselson M, Dunsmuir P, Schweber M, Bingham P (1980) Unstable DNA elements in the chromosomes ofDrosophila. In: Horowicz NH, Hutchings E Jr (eds) Genes, Cells and Behavior: A View of Biology Fifty Years Later. W.H. Freeman and Co., San Francisco, pp 88–92

    Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  Google Scholar 

  • Patterson JT, Dobzhanosky T (1945) Incipient reproductive isolation between two subspecies ofDrosophila pallidipennis. Genetics 30:429–438

    Google Scholar 

  • Patterson JT, Stone WS (1952) Evolution in the GenusDrosophila Macmillan, Co, New York

    Google Scholar 

  • Potter SS, Brorein W, Dunsmuir P, Rubin GM (1979) Transposition of elements of the 412, copia and 297 dispersed repeated gene families inDrosophila. Cell 17:415–427

    Article  PubMed  Google Scholar 

  • Simmons MT, Johnson NA, Fahey TM, Nellett SM, Raymond JD (1980) High mutability in male hybrids ofDrosophila melanogaster. Genetics 96:479–490

    PubMed  Google Scholar 

  • Spradling A, Rubin GM (1981) Drosophila Genome Organization: conserved and dynamic aspects. Annu Rev Genet (in press)

  • Strobel E, Dunsmuir P, Rubin GM (1979) Polymorphism in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families inDrosophila. Cell 17:429–439

    Article  PubMed  Google Scholar 

  • Sturtevant AH (1939) High mutation frequency induced by hybridization. Proc Natl Acad Sci 25:308–310

    Google Scholar 

  • Sved JA (1979) The “hybrid disgenesis” syndrome inDrosophila melanogaster. Bioscience 29:659–664

    Google Scholar 

  • Temin HM (1974) On the origin of RNA tumor viruses. Annu Rev Genet 8:155–166

    Article  PubMed  Google Scholar 

  • Templeton AR (1981) Mechanisms of speciation—a population genetic approach. Annu Rev Ecol Syst 12:23–48

    Article  Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology and geography ofDrosophila. In: King RC (ed) Handbook of Genetics 3. Plenum Press, New York

    Google Scholar 

  • Thomas C (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256

    Article  PubMed  Google Scholar 

  • Wahl GM, Stern M, Stark GR (1979) Efficient tranfer large DNA fragments from agarose gels to diazobenzyloxymethylpaper and rapid hybridization using dextran sulfate. PNAS 76:3683–3687

    PubMed  Google Scholar 

  • Wensnk PC, Tabata S, Pachl C (1979) The clustered and scrambled arrangement of moderately repetitive elements inDrosophila DNA. Cell 18:1231–1246

    Article  PubMed  Google Scholar 

  • Woodruff RD, Thompson JN, Lyman RF (1979) Intraspecific hybridisation and the release of mutator activity. Nature 278:277–279

    Article  PubMed  Google Scholar 

  • Woodruff RD, Thompson JN (1980) Hybrid release of mutator activity and the genetic structure of natural populations. In: Hecht M, Steere WC, Wallace B (eds) Evolutionary Biology 12. Plenum Press, New York, pp 129–161

    Google Scholar 

  • Young MW (1979) Middle repetitive DNA: A fluid component of theDrosophila genome. Proc Natl Acad Sci USA 76: 6274–6278

    PubMed  Google Scholar 

  • Young MW, Schwarz HE (1981) Nomadic gene families inDrosophila. Cold Spring Harbor Symp Quant Biol XLV:629–640

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, G., Wiernasz, D. & Schedl, P. Evolution ofDrosophila repetitive-dispersed DNA. J Mol Evol 19, 203–213 (1983). https://doi.org/10.1007/BF02099967

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099967

Key words

Navigation