Skip to main content
Log in

Doublet preference and gene evolution

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Doublet preference analysis was carried out on coding and noncoding regions ofEscherichia coli, Saccharomyces cerevisiae, and human mitochondrial and nuclear DNA. The preference pattern in 1–2 and 2–3 doublets inE. coli andS. cerevisiae correlated with that in noncoding regions. The 3-1 doublet preference inE. coli genes with low optimal codon frequency and inS. cerevisiae genes also showed a correlation with each of their noncoding doublet preference. A mechanism to explain these double preference correlations in doublet preference is presented: mutational biases, the origin of the noncoding region doublet preference, evolved so as to maintain the 1–2 and 2–3 doublet preference, which is determined by codon usage. These biases then acted on the 3-1 doublet, which was almost free of coding constraints, resulting in a similar preference in this doublet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nielich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    PubMed  Google Scholar 

  • Aota S-I, Ikemura T (1986) Diversity in G+C content at the third letter position of codons in vertebrate genes and its cause. Nucleic Acids Res 14:6345–6355, 8702 (erratum)

    PubMed  Google Scholar 

  • Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J, Cury G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blooded vertebrates. Science 228:953–958

    PubMed  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    PubMed  Google Scholar 

  • Blake RD, Earley S (1986) Distribution and evolution of sequence characteristics in theE. coli genome. J Biomol Struct & Dyn 4:291–307

    Google Scholar 

  • Gouy M (1987) Codon contexts in enterobacterial and coliphage genes. Mol Biol Evol 4:426–444

    PubMed  Google Scholar 

  • Grantham R, Gautier C, Gouy M, Mercier R, Pave A (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8:449–62

    Google Scholar 

  • Guttman I, Wilks SS, Hunter JS (1982) Introductory engineering statistics, ed 3. John Wiley & Sons, New York

    Google Scholar 

  • Hanai R, Wada A (1988) The effects of guanine and cytosine variation on dinucleotide frequency and amino acid composition in the human genome. J Mol Evol 27:321–325

    PubMed  Google Scholar 

  • Hanai R, Wada A (1989) Novel third-letter bias inEscherichia coli codons revealed by rigorous treatment of coding constraints. J Mol Biol 208:207, 655–660

    Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    PubMed  Google Scholar 

  • Ikemura T, Aota S-I (1988) Global variation in G+C content along vertebrate genome DNA. Possible correlation with chromosome band structure. J Mol Biol 203:1–13

    PubMed  Google Scholar 

  • Jukes TH (1978) Codons and nearest-neighbor nucleotide pairs in mammalian messenger RNA. J Mol Evol 11:121–127

    PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Konigsberg W, Godson N (1983) Evidence for use of rare codons in the dnaG gene and other regulatory genes ofEscherichia coli. Proc Natl Acad Sci USA 80:687–691.

    PubMed  Google Scholar 

  • Lewin B (1985) Genes. Wiley, New York

    Google Scholar 

  • Nussinov R (1981a) Eukaryotic dinucleotide preference rules and their implications for degenerate codon usage. J Mol Biol 149:125–131

    PubMed  Google Scholar 

  • Nussinov R (1981b) The universal dinucleotide asymmetry rules in DNA and the amino acid codon choice. J Mol Evol 17:237–244

    PubMed  Google Scholar 

  • Nussinov R (1984) Strong doublet preferences in nucleotide sequence and DNA geometry. J Mol Evol 20:111–119

    PubMed  Google Scholar 

  • Osawa S, Jukes TH, Muto A, Yamao F, Ohama T, Andachi Y (1987) Role of GC/AT-biased mutation pressure in evolution of eubacterial code. Cold Spring Harbor Symp Quant Biol 52: 777–789

    PubMed  Google Scholar 

  • Russel GJ, McGeoch DJ, Elton RA, Subak-Sharpe JH (1973) Doublet frequency analysis of bacterial DNAs. J Mol Evol 2: 277–292

    PubMed  Google Scholar 

  • Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage patterns inEscherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster, andHomo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–8211

    PubMed  Google Scholar 

  • Shields DC, Sharp PM (1987) Synonymous codon usage inBacillis subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 15:8023–8040

    PubMed  Google Scholar 

  • Shpaer EG (1986) Constraints on codon context inEscherichia coli genes. Their possible role in modulating the effiency of translation. J Mol Biol 188:555–564

    PubMed  Google Scholar 

  • Subak-Sharpe H, Burk RR, Crawford LV, Morrison JM, Hay J, Keir HM (1966) An approach to evolutionary relationships of mammalian DNA viruses through analysis of the pattern of nearest neighbor base sequences. Cold Spring Harbor Symp Quant Biol 31:737–748

    PubMed  Google Scholar 

  • Sueoka N (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 48:582–592

    PubMed  Google Scholar 

  • Swartz MN, Trautner TA, Kornberg A (1962) Enzymatic synthesis of deoxyribonucleic acid: xi. Further studies on the nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem 237:1961–1967

    PubMed  Google Scholar 

  • Wada A, Suyama A (1985) Third letters in codons counterbalance the (G+C)-content of their first and second letters. FEBS Lett 188:291–294

    Google Scholar 

  • Wu C-I, Maeda N (1987) Inequality in mutation rates of the two strands of DNA. Nature 327:169–170

    PubMed  Google Scholar 

  • Yarus M, Folley LS (1985) Sense codons are found in specific context. J Mol Biol 182:529–540

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanai, R., Wada, A. Doublet preference and gene evolution. J Mol Evol 30, 109–115 (1990). https://doi.org/10.1007/BF02099937

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099937

Key words

Navigation