Skip to main content
Log in

Integrable time-discretisation of the Ruijsenaars-Schneider model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

An exactly integrable symplectic correspondence is derived which in a continuum limit leads to the equations of motion of the relativistic generalization of the Calogero-Moser system, that was introduced for the first time by Ruijsenaars and Schneider. For the discrete-time model the equations of motion take the form of Bethe Ansatz equations for the inhomogeneous spin-1/2 XYZ Heisenberg magnet. We present a Lax pair, the sympletic structure and prove the involutivity of the invariants. Exact solutions are investigated in the rational and hyperbolic (trigonometric) limits of the system that is given in terms of elliptic functions. These solutions are connected with discrete soliton equations. The results obtained allow us to consider the Bethe Ansatz equations as ones giving an integrable symplectic correspondence mixing the parameters of the quantum integrable system and the parameters of the corresponding Bethe wavefunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nijhoff, F. W., Pang, G. D.: A time-discretized version of the Calogero-Moser model. Phys. Lett.191A, 101–107 (1994)

    Google Scholar 

  2. Nijhoff, F. W., Pang, G. D.: Integrable discrete-time particle systems and elliptic solutions of the lattice KP equations. In preparation

  3. Nijhoff, F. W., Pang, G. D.: Discrete-time Calogero-Moser model and lattice KP equations. In: Proc. of the Intl. Workshop on Symmetries and Integrability of Difference Equations. Levi, D., Vinet, L., Winternitz, P. (eds.), CRM Lecture Notes and Proceedings, to be published, hep-th/940971

  4. Calogero, F.: Solution of the one-dimensionalN-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys.12, 419–436 (1971); J. Math. Phys.10, 2191 (1969); ibid. J. Math. Phys.12, 418 (1971)

    Article  Google Scholar 

  5. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. Phys. Rev.A4, 2019 (1971); ibid. Sutherland, B.: Exact results for a quantum many-body problem in one dimension. II, Phys. Rev.A5, 1372 (1972)

    Article  Google Scholar 

  6. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math.16, 197–220 (1975)

    Article  Google Scholar 

  7. Olshanetsky, M. A., Perelomov, A. M.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep.71, 313–400 (1981); Quantum integrable systems related to Lie algebras. ibid Phys. Rep.94, 313–404 (1983)

    Article  Google Scholar 

  8. Veselov, A. P.: Integrable maps. Russ. Math. Surv.46:5, 1–51 (1991)

    Google Scholar 

  9. Wojchiechowski, S.: The analogue of the Bäcklund transformation for integrable many-body systems. J. Phys. A: Math. Gen.15, L653–657 (1982)

    Article  Google Scholar 

  10. Ruijsenaars, S. N. M., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys.170, 370–405 (1986)

    Article  Google Scholar 

  11. Ruijsenaars, S. N. M.: Finite-dimensional soliton systems. In: Integrable and Super-Integrable Systems. Kupershmidt, B. (ed.), Singapore: World Scientific Publ. Co., 1990, pp. 165–206

    Google Scholar 

  12. Ruijsenaars, S. N. M.: Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Comm. Math. Phys.110, 191–213 (1987)

    Article  Google Scholar 

  13. Bruschi, M., Calogero, F.: The Lax representation for an integrable class of relativistic dynamical systems. Commun. Math. Phys.109, 481–492 (1987)

    Article  Google Scholar 

  14. van Diejen, J.-F.: Families of commuting difference operators. Ph.D. Thesis, University of Amsterdam, June, 1994

  15. Koornwinder, T. H.: Askey-Wilson polynomials for root systems of type BC. In: Hypergeometric functions on domains of positivity, Jack polynomials, and applications, Richards, D.St.P. (ed.), Contemp. Math.138 (1992), pp. 189–204

  16. Feigin, B., Frenkel, E., Reshetikhin, N.: Gaudin model, Bethe Ansatz and correlation functions at the critical level. hep-th/9402022

  17. Etingof, P. I.: Quantum integrable systems and representations of Lie algebras. hep-th/9311132

  18. Cherednik, I.: Integration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations. Adv. Math.106, 69–95 (1994)

    Article  Google Scholar 

  19. Bruschi, M., Ragnisco, O., Santini, P. M., Tu, G.-Z.: Integrable symplectic maps. Physica49D, 273–294 (1991)

    Google Scholar 

  20. Erdelyi, A., e.a.: Higher Transcendental Functions. Volume2, New York: McGraw-Hill, 1953

    Google Scholar 

  21. Frobenius, G.: Über die elliptischen Funktionen zweier Art. J. Reine Angew. Math.93, 53–68 (1882)

    Google Scholar 

  22. Sklyanin, E. K.: On the poisson structure of the periodic classical XYZ-chain. J. Sov. Math.46, 1664–1683 (1989) [Zap. Nauch. Sem.150, 154–180 (1986)]

    Article  Google Scholar 

  23. Whittaker, E. T., Watson, G. N.: A Course in Modern Analysis. Cambridge: Cambridge University Press, 4th ed., 1988

    Google Scholar 

  24. Nijhoff, F. W., Papageorgiou, V. G., Capel, H. W.: Integrable time-discrete systems: Lattices and mappings. In: Quantum Groups. Kulish, P. P. (ed.), Springer LNM1510, 1992, pp. 312–325

  25. Veselov, A. P.: Growth and integrability in the dynamics of maps. Commun. Math. Phys.145, 181–193 (1992)

    Google Scholar 

  26. Airault, H., McKean, H., Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Commun. Pure Appl. Math.30, 95–148 (1977)

    Google Scholar 

  27. Chudnovsky, D. V., Chudnovsky, G. V.: Pole expansions of nonlinear partial differential equations. Nuovo Cim.40B, 339–353 (1977)

    Google Scholar 

  28. Krichever, I. M.: Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems ofN particles on a line. Funct. Anal. Appl.12, 59–61 (1978)

    Article  Google Scholar 

  29. Babelon, O., Bernard, D.: The sine-Gordon solitons as aN-body problem. Preprint SPhT-93-072, LPTHE-93-40, hep-th/9309154

  30. Nijhoff, F. W., Capel, H. W., Wiersma, G. L., Quispel, G. R. W.: Bäcklund transformations and three-dimensional lattice equations. Phys. Lett.105A, 267–272 (1984)

    Google Scholar 

  31. Nijhoff, F. W., Capel, H., Wiersma, G. L.: Integrable lattice systems in two and three dimensions. In: Geometric Aspects of the Einstein Equations and Integrable Systems. Martini, R. (ed.), Springer Lect. Notes Phys.239, 1985, pp. 265–302.

  32. Nijhoff, F. W., Papageorgiou, V. G., Capel, H. W., Quispel, G. R. W.: The lattice Gel'fan-Dikii hierarchy. Inv. Probl.8, 597–621 (1992)

    Article  Google Scholar 

  33. Capel, H. W., Nijhoff, F. W.: Integrable lattice equations. In: Important Developments in Soliton Theory. Fokas, A. S., Zakharov, V. E. (eds.), Springer Lect. Notes in Nonlinear Dynamics, 1993, pp. 38–57

  34. Hirota, R.: Discrete analogue of generalized Toda equation. J. Phys. Soc. Japan50, 3785–3791 (1981)

    Article  Google Scholar 

  35. Date, E., Jimbo, M., Miwa, T.: Method for generating discrete soliton equations II. J. Phys. Soc. Japan51, 4125–4131 (1982)

    Article  Google Scholar 

  36. Baxter, R. J.: Exactly Solved models in Statistical Mechanics. London: Academic Press, 1982

    Google Scholar 

  37. Faddeev, L. D.: Quantum Inverse Scattering Method. Sov. Sci. Revs.C1, 107–160 (1981)

    Google Scholar 

  38. Korepin, V. E., Bogoliubov, N. M., Izergin, A. G.: Correlation Functions for Integrable Systems and Quantum Inverse Scattering Method. New York: Academic Press, 1994

    Google Scholar 

  39. Takhtajan, L. A., Faddeev, L. D.: The Quantum Method of the Inverse Problem and the Heisenberg XYZ Model. Russ. Math. Surv.34, no. 5, 11–68 (1979)

    Google Scholar 

  40. Takebe, T.: Generalized Bethe Ansatz with the general spin representations of the Sklyanin algebra. J. Phys. A: Math. Gen.25, 1071–1083 (1992)

    Article  Google Scholar 

  41. Faddeev, L. D.: Algebraic Aspects of Bethe-Ansatz. Preprint ITP-SB-94-11, March 1994, hep-th/9404013

  42. Sklyanin, E. K.: Some algebraic structures connected with the Yang-Baxter equation. Funct. Anal. Appl.16, 263–270 (1983); ibid Sklyanin, E. K.: Some algebraic structures connected with the Yang-Baxter equation. II Representations of quantum algebras. Funct. Anal. Appl.17, 273–284 (1984)

    Article  Google Scholar 

  43. Sklyanin, E. K.: Boundary conditions for quantum integrable systems. J. Phys. A: Math. Gen.21, 2375–2387 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Jimbo

Supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nijhoff, F.W., Ragnisco, O. & Kuznetsov, V.B. Integrable time-discretisation of the Ruijsenaars-Schneider model. Commun.Math. Phys. 176, 681–700 (1996). https://doi.org/10.1007/BF02099255

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099255

Keywords

Navigation