Skip to main content
Log in

Quantization of Chern-Simons gauge theory with complex gauge group

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The canonical quantization of Chern-Simons gauge theory in 2+1 dimensions is generalized from the case in which the gauge group is a compact Lie groupG to the case in which the gauge group is a complex Lie groupG . Though the physical Hilbert spaces become infinite dimensional in the latter case, the quantization can be described as precisely as for compact gauge groups and using similar methods. The special case in which the gauge group isSL(2,ℂ) gives a description of 2+1 dimensional quantum gravity with Lorentz signature and positive cosmological constant or with Euclidean signature and negative cosmological constant. While it is not clear whether there is a 1+1 dimensional conformal field theory related to these 2+1 dimensional models, there are natural, computable candidates for the central charge and the conformal blocks of such a hypothetical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351 (1989); Gauge theories and integrable lattice models, Nucl. Phys.B322, 351 (1989); Gauge theories, vertex models, and quantum groups. Nucl. Phys.B330, 285 (1990)

    Article  Google Scholar 

  2. Achúcarro, A., Townsend: A Chern-Simons actions for three dimensional anti-De Sitter supergravity theories. Phys. Lett.180B, 89 (1986)

    Google Scholar 

  3. Rocek, M., van Nieuwenhuizen, P.: Class. Quantum Grav.3, 43 (1986)

    Article  Google Scholar 

  4. Witten, E.: 2+1 dimensional gravity as an exactly soluble system. Nucl. Phys.B311, 46 (1988)

    Article  Google Scholar 

  5. Witten, E.: Topology-Changing amplitudes in 2+1 dimensional gravity. Nucl. Phys.B323, 113 (1989)

    Article  Google Scholar 

  6. Carlip, S.: Exact quantum scattering in 2+1 dimensional gravity. Nucl. Phys.B324, 106 (1989)

    Article  Google Scholar 

  7. Knizhnik, V. G., Polyakov, A. M., Zamolodchikov, A. B.: Fractal structure of 2d gravity. Mod. Phys. Lett.A3, 319 (1988)

    Article  Google Scholar 

  8. Verlinde, H.: Conformal field theory, 2-D quantum gravity, and quantization of Teichmüller space, Princeton preprint PUPT-89/1140

  9. Elitzur, S., Moore, G., Schwimmer, A., Seiberg, N.: Remarks on the canonical quantization of the Chern-Simons-Witten theory. IAS preprint HEP-89/20

  10. Bos, M., Nair, V.: Coherent state quantization of Chern-Simons theory. Columbia University preprint (May, 1989)

  11. Axelrod, S., Della Pietra, S., Witten, E.: Geometric quantization of Chern-Simons gauge theory, to appear in Jour. Diff. Geom. (May, 1991).

  12. Hitchin, N.: Flat connections and geometric quantization. Commun. Math. Phys.131, 347–380 (1990)

    Google Scholar 

  13. Kostant, B.: Orbits, Symplectic Structures, and Representation Theory. Proc. of the U.S.-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965. On Certain Unitary Representations Which Arise From a Quantization Theory. Lecture Notes in Math., Vol6, Battelle Seattle Rencontres, Berlin, Heidelberg, New York: Springer 1970, p. 237. Orbits And Quantization Theory. Proc. Int. Congress of Mathematicians, Nice, 1970, p. 395. Quantization and Unitary Representations. Lecture Notes in Math. Vol170, Berlin, Heidelberg, New York: Springer 1970, p. 87. Line Bundles and the Prequantized Schrodinger Equation. Coll. Group Theoretical Methods in Physics, Centre de Physique Theorique, (Marseille, 1972) p. 81. Symplectic Spinors. Symposia Mathematica (Rome), Vol XIV (1974), p. 139. On the Definition of Quantization. Geometric Symplectique et Physique Mathématique, Coll. CNRS, No. 237 (Paris, 1975), p. 187. Quantization and Representation Theory. Proc. Oxford Conference on Group Theory and Physics, (Oxford, 1977); Kostant, B., Auslander, L.: Polarization and unitary representations of solvable Lie groups, Invent. Math. 753 (1971)

    Google Scholar 

  14. Souriau, J.-M.: Quantification geometrique. Commun. Math. Phys.1, 374 (1966), Structures Des Systems Dynamiques, Paris: Dunod 1970

    Google Scholar 

  15. Sniatycki, J.: Geometric quantization and quantum mechanics, Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  16. Woodhouse, N.: Geometric quantization. Oxford: Oxford University Press 1980

    Google Scholar 

  17. Carlip, S., de Alwis, S. P.: Wormholes in 2+1 dimensions. IAS preprint HEP-89/52 (1989)

  18. Geoffrey Mess,: Flat Lorentz spacetimes. Preprint (to appear)

  19. Hitchin, N.: The self-duality equations on a Riemann surface. Proc. London Math. Soc.3, 55, 59 (1987)

    Google Scholar 

  20. Ray, D., Singer, I. M.: R-Torsion and the Laplacian on Riemannian Manifolds. Adv. Math.7, 145 (1971). Analytic Torsion of Complex Manifolds. Ann. Math.98, 154 (1973)

    Article  Google Scholar 

  21. Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl.19, 31 (1985)

    Article  Google Scholar 

  22. Bismut, J., Freed, D.: The analysis of elliptic families. Commun. Math. Phys.106, 159 (1986)

    Article  Google Scholar 

  23. Witten, E.: The central charge in three dimensions. In Physics and Mathematics of Strings, Brink, L., Friedan, D., Polyakov, A. M. (eds.) Singapore: World Scientific 1990

    Google Scholar 

  24. Atiyah, M. F.: On framings of 3-manifolds. Oxford University preprint (1989), to appear in Topology.

  25. Knizhnik, V. G., Zamolodchikov, A. B.: Current algebra and Wess-Zumino model in two dimensions. Nucl. Phys.B247, 83 (1984)

    Article  Google Scholar 

  26. Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetry in twodimensional quantum field theory. Nucl. Phys.B241, 333 (1984)

    Article  Google Scholar 

  27. Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys.B 300, 360 (1988)

    Article  Google Scholar 

  28. Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett.B212, 360 (1988) Classical and quantum conformal field theory. Nucl. Phys. B.

    Google Scholar 

  29. Dijkgraaf, R., Vafa, C., Verlinde, E., Verlinde, H.: Operator algebra of orbifold models. Commun. Math. Phys.123, 485 (1989)

    Article  Google Scholar 

  30. Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology. Commun. Math. Phys.129, 393 (1990)

    Google Scholar 

  31. Jakobsen, H. P., Kac, V. G.: A new class of unitarizable highest weight representations of infinite dimensional Lie algebras, preprint

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S.-T. Yau

Research supported in part by NSF Grant 86-20266 and NSF Waterman Grant 88-17521

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witten, E. Quantization of Chern-Simons gauge theory with complex gauge group. Commun.Math. Phys. 137, 29–66 (1991). https://doi.org/10.1007/BF02099116

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02099116

Keywords

Navigation