Skip to main content
Log in

Mössbauer spectroscopy of laser annealed tellurium implanted silicon (II).129I

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Laser annealed129mTc-implanted silicon has been investigated using129I Mössbauer spectroscopy. At least three dopedependent charge states of substitutional iodine are found. For heavily doped p-type Si a single line component S1, with isomer shift S=0.96(4) mm/s w. r. t. Cu129I and an effective Debye temperature ϕ′=196(3) K is observed. This component is attributed to I++. For compensated Si a single line component, S2, assigned to I+, with S=2.39 (4) mm/s and ϕ′=170 (3) K is found. For n-type Si, a component S3, characterized at 4.2 K by S=2.15 (4) mm/s and a quadrupole splitting eQVzz/h=452 (8) MHz (n≃0)is observed. At higher temperatures S3 shows quadrupole relaxation and its recoilless fraction becomes strongly anisotropic. This behaviour is explained on the basis of a transition from a static to a dynamic Jahn-Teller distortion. Component S3 has been attributed to I0. In the spectra of compensated and n-type Si a less well-defined component Q, with parameters resembling those of S3 but showing no quadrupole relaxation, is observed. This component has tentatively also been assigned to Io. The results can be understood qualitatively on the basis of a simple MO-model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tamminga, G.E.J. Eggermont, W.K. Hofker, D. Hoonhout, R. Garrett and F.W. Saris, Phys. Lett. 69A (1979) 436;

    Article  ADS  Google Scholar 

  2. D. Hoonhout and F.W. Saris, J. Appl. Phys. 53 (1982) 4379.

    Article  ADS  Google Scholar 

  3. G.J. Kemerink, unpublished results (1977).

  4. H. de Waard, in Mössbauer effect data index — 1973, ed. J.G. Stevens and V.E. Stevens (Plenum, New York, 1975) p. 447.

    Google Scholar 

  5. G.J. Kemerink, D.O. Boerma, H. de Waard and L. Niesen, Radiat. Eff. 69 (1983) 83; G.J. Kemerink, H. de Waard, L. Niesen and D.O. Boerma, Radiat. Eff. 69 (1983) 101.

    Article  Google Scholar 

  6. G.J. Kemerink, D.O. Boerma, H. de Waard, J.C. de Wit and S.A. Drentje, J. de phys. 41 (1980) C1–435.

    Article  Google Scholar 

  7. M. Blume, Phys. Rev. 174 (1968) 351.

    Article  ADS  Google Scholar 

  8. J.A. Tjon and M. Blume, Phys. Rev. 165 (1968) 456.

    Article  ADS  Google Scholar 

  9. G.J. Kemerink, H. de Waard, L. Niesen and D.O. Boerma, accepted for publication in Radiat. Eff.

  10. A.H. Snell, in Alpha-, beta-and gamma-ray spectroscopy, ed. K. Siegbahn, vol. 2 (North-Holland, Amsterdam, 1968) p. 1545.

    Google Scholar 

  11. W.J.J. Spijkervet and F. Pleiter, Hyp. Int. 7 (1979) 285.

    Article  ADS  Google Scholar 

  12. J. Ladrière, M. Cogneau and A. Moykens, J. de Phys. 41 (1980) C1–313.

    Article  Google Scholar 

  13. D.E. Ellis, in Mössbauer isomer shifts, ed. G.K. Shenoy and F.E. Wagner (North-Holland, Amsterdam, 1978) p. 623.

    Google Scholar 

  14. S.T. Pantelides and C.T. Sah, Phys. Rev. B10 (1974) 638.

    Article  ADS  Google Scholar 

  15. T.H. Ning and C.T. Sah, Phys. Rev. B4 (1971) 3482.

    Article  ADS  Google Scholar 

  16. H.A. Jahn and E. Teller, Proc. Roy. Soc. A161 (1937) 220.

    Article  ADS  Google Scholar 

  17. M.D. Sturge, in Solid state physics, ed. F. Seitz, D. Turnbull and H. Ehrenreich, vol. 20 (Academic Press, 1967) p. 91.

  18. F.S. Ham, Phys. Rev. 160 (1967) 328.

    Article  ADS  Google Scholar 

  19. G.A. van der Velde, Ph.D. thesis, University of Groningen (1974).

  20. D.A. Shirley, Rev. Mod. Phys. 36 (1964) 339.

    Article  ADS  Google Scholar 

  21. F.G. Allen and G.W. Gobeli, J. Appl. Phys. 35 (1964) 597.

    Article  ADS  Google Scholar 

  22. W. Petry, G. Vogl and W. Mansel, Phys. Rev. Lett. 45 (1980) 1862.

    Article  ADS  Google Scholar 

  23. K.S. Singwi and A. Sjölander, Phys. Rev. 119 (1960) 863.

    Article  ADS  Google Scholar 

  24. G. Vogl, W. Mansel and P.H. Dederichs, Phys. Rev. Lett. 36 (1976) 1497.

    Article  ADS  Google Scholar 

  25. J.M. Grow, D.G. Howard, R.H. Nussbaum and M. Takeo, Phys. Rev. B17 (1978) 15.

    Article  ADS  Google Scholar 

  26. J.W. Petersen, O.H. Nielsen, G. Weyer, E. Antoncik and S. Damgaard, Phys. Rev. B21 (1980) 4292.

    Article  ADS  Google Scholar 

  27. E. Kankeleit and A. Körding, J. de Phys. 12 (1976) C6–65.

    Google Scholar 

  28. H.G. Grimmeiss, Ann. Rev. Mater. Sci. 7 (1977) 341.

    Article  ADS  Google Scholar 

  29. E.L. Wolf, D.L. Losee, D.E. Cullen and W. Dale Compton, Phys. Rev. Lett. 26 (1971) 438.

    Article  ADS  Google Scholar 

  30. H.F. Staunton, quoted by N.F. Mott, Adv. Phys. 21 (1972) 785.

    Article  Google Scholar 

  31. P.L. Hemment and P.R.C. Stevens, in Atomic collision phenomena in solids, ed. D.W. Palmer, M.W. Thompson and P.D. Townsend (North-Holland, Amsterdam, 1970) p. 217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemerink, G.J., de Waard, H., Niesen, L. et al. Mössbauer spectroscopy of laser annealed tellurium implanted silicon (II).129I. Hyperfine Interact 14, 53–88 (1983). https://doi.org/10.1007/BF02098295

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02098295

Keywords

Navigation