Skip to main content
Log in

The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider two-dimensional Bernoulli percolation at densityp>p c and establish the following results:

  1. 1.

    The probability,P N (p), that the origin is in afinite cluster of sizeN obeys

    $$\mathop {\lim }\limits_{N \to \infty } \frac{1}{{\sqrt N }}\log P_N (p) = - \frac{{\omega (p)\sigma (p)}}{{\sqrt {P_\infty (p)} }},$$

    whereP (p) is the infinite cluster density, σ(p) is the (zero-angle) surface tension, and ω(p) is a quantity which remains positive and finite asp↓p c . Roughly speaking, ω(p)σ(p) is the minimum surface energy of a “percolation droplet” of unit area.

  2. 2.

    For all supercritical densitiesp>p c , the system obeys a microscopic Wulff construction: Namely, if the origin is conditioned to be in a finite cluster of sizeN, then with probability tending rapidly to 1 withN, the shape of this cluster-measured on the scale\(\sqrt N\)-will be that predicted by the classical Wulff construction. Alternatively, if a system of finite volume,N, is restricted to a “microcanonical ensemble” in which the infinite cluster density is below its usual value, then with probability tending rapidly to 1 withN, the excess sites in finite clusters will form a single large droplet, which-again on the scale\(\sqrt N\)-will assume the classical Wulff shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • [A] Abraham, D. B.: Surface structures and phase transitions-Exact results. In: Phase Transitions and Critical Phenomena, Vol. 10. Domb, C., Lebowitz, J. L. (eds.), London: Academic Press 1987

    Google Scholar 

  • [ACCFR] Aizenman, M., Chayes, J. T., Chayes, L., Fröhlich, J., Russo, L.: On a sharp transition from area law to perimeter law in a system of random surfaces. Commun. Math. Phys.92, 19 (1983)

    Article  Google Scholar 

  • [ACCN] Aizenman, M., Chayes, J. T., Chayes, L., Newman, C. M.: Discontinuity of the magnetization in the 1/|x−y|2 Ising and Potts models. J. Stat. Phys.50, 1 (1988)

    Article  Google Scholar 

  • [ADS] Aizenman, M., Delyon, F., Souillard, B.: Lower bounds on the cluster size distribution. J. Stat. Phys.23, 267 (1980)

    Article  Google Scholar 

  • [AN] Aizenman, M., Newman, C. M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys.36, 107 (1984)

    Article  Google Scholar 

  • [ATZ] Avron, J. E., Taylor, J. E., Zia, R. K. P.: Equilibrium shapes of crystals in a graviational field: Crystals on a table. J. Stat. Phys.33, 493 (1983)

    Article  Google Scholar 

  • [B] Bennett, T.: Probabilistic inequalities for the sum of independent random variables. J. Am. Stat. Assoc.57, 33 (1962)

    Google Scholar 

  • [BF] van den Berg, J., Fiebig, U.: On a combinatorial conjecture concerning disjoint occurrence of events. Ann. Probab.15, 354 (1987)

    Google Scholar 

  • [BGN] Barsky, D. J., Grimmett, G., Newman, C. M.: in preparation

  • [BH] Broadbent, S. R., Hammersley, J. M.: Percolation processes I: Crystals and mazes. Proc. Camb. Phil. Soc.53, 629 (1957)

    Google Scholar 

  • [BK] van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability theory. J. Appl. Prob.22, 556 (1985)

    Google Scholar 

  • [BN] van Beijeren, H., Nolden, I.: The roughening transition in: Current Topics in Physics, Vol.43, Schommers, W., von P., Blanckenhagen, (eds.), p. 259, Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  • [CC1] Chayes, J. T., Chayes, L.: Percolation and random media. In: Les Houches Session XLIII: Critical Phenomena, Random Systems and Gauge Theories. Osterwalder, K., Stora, R. (eds.), pp 1001–1142, Amsterdam: Elsevier 1986

    Google Scholar 

  • [CC2] Chayes, J. T., Chayes, L.: On the upper Critical dimension of Bernoulli percolation. Commun. Math. Phys.113, 27 (1987)

    Article  Google Scholar 

  • [CCGKS] Chayes, J. T., Chayes, L., Grimmett, G. R., Kesten, H., Schonmann, R. H.: The correlation length for the high density phase of Bernoulli percolation. Ann. Probab17, 1277 (1989)

    Google Scholar 

  • [CCN] Chayes, J. T., Chayes, L., Newman, C. M.: Bernoulli percolation above threshold: An invasion percolation analysis. Ann. Probab15, 1272 (1987)

    Google Scholar 

  • [CCS] Chayes, J. T., Chayes, L., Schonmann, R. H.: Exponential decay of connectivities in the two-dimensional Ising model. J. Stat. Phys.49, 433 (1987)

    Article  Google Scholar 

  • [DD] De Coninck, J., Dunlop, F.: Partial to complete wetting: A microscopic derivation of the Young relation, Ecole Polytechnique preprint

  • [DDR] De Coninck, J., Dunlop, F., Rivasseau, V.: On the microscopic validity of the Wulff construction and of the generalized Young equation, Ecole Polytechnique preprint

  • [DKS] Dobrushin, R. L., Kotecky, R., Shlosman, S. B.: In preparation; announcements to appear in the Proceedings of the Karpacz (Poland) Winter School, 1988: Equilibrium crystal shapes—A microscopic proof of the Wulff construction; and in the contributions of Kotecky, R., of Shlosman, S. B. in the Proceedings of the 9th International Congress on Mathematical Physics, Swansea (Wales), July 1988

  • [F] Federer, H.: Geometric measure theory. Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  • [FK] Fortuin, C., Kasteleyn, P.: On the random cluster model I. Physica57, 536 (1972)

    Article  Google Scholar 

  • [FKG] Fortuin, C., Kasteleyn, P., Ginibre, J.: Correlation inequalities on some partially ordered sets, Commun. Math. Phys.22, 89 (1971)

    Article  Google Scholar 

  • [G] Grimmett, G.: Percolation, Berlin, Heidelberg, New York, Springer (1989)

    Google Scholar 

  • [H] Hammersley, J. M.: Percolation processes. Lower bounds for the critical probability. Ann. Math. Stat.28, 790 (1957)

    Google Scholar 

  • [Har-] Harris, T. E.: A lower bound for the critical probability in certain percolation processes. Proc. Camb. Phil. Soc.56, 13 (1960)

    Google Scholar 

  • [K1] Kesten, H.: Analyticity properties and power law estimates of functions in percolation theory. J. Stat. Phys.25, 717 (1981)

    Article  Google Scholar 

  • [K2] Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys.74, 41 (1980)

    Article  Google Scholar 

  • [K3] Kesten, H.: Percolation Theory for Mathematicians, Boston: Birkhäuser, 1982

    Google Scholar 

  • [KS] Kunz, H., Souillard, B.: Essential singularity in percolation problems and asymptotic behavior of the cluster size distribution. J. Stat. Phys.19, 77 (1978)

    Article  Google Scholar 

  • [KZ] Kesten, H., Zhang, Y.: The probability of a large finite cluster in supercritical Bernoulli percolation, Cornell preprint

  • [MS] Minlos, R. A., Sinai, Ya. G.: The phenomenon of phase separation at low temperatures in some lattice models of a gas II. Tr. Mosk. Mat. Obshch.19, 113 (1968) (English translation: Trans. Moscow Math. Soc.19, 121 (1968))

    Google Scholar 

  • [R] Russo, L.: On the critical percolation probabilities. Z. Warsch. Verw. Geb.56, 229 (1981)

    Article  Google Scholar 

  • [RW] Rottman, C., Wortis, M.: Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions. Phys. Rep.103, 59 (1984)

    Article  Google Scholar 

  • [S] Simon, B.: Correlation inequalities and decay of correlations in ferromagnets. Commun. Math. Phys.77, 111 (1980)

    Article  Google Scholar 

  • [T1] Taylor, J. E.: Existence and structure of solutions to a class of nonelliptic variational problems. Symposia Math.XIV, 499 (1974)

    Google Scholar 

  • [T2] Taylor, J. E.: Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symposia Pure Math.27, 419 (1975)

    Google Scholar 

  • [W] Winterbottom, W. L.: Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metal.15, 303 (1967)

    Article  Google Scholar 

  • [Wu]Wulff, G.: Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflachen Z. Krist.34, 449 (1901)

    Google Scholar 

  • [Z] Zhang, Y.: unpublished

  • [ZAT] Zia, R. K. P., Avron, J. E., Taylor, J. E.: The summertop construction: Crystals in a corner. J. Stat. Phys.50, 727 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Aizenman

Work supported in part by NSF Grant No. DMS-87-02906

Work supported in part by NSF Grant No. DMS-88-06552

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, K., Chayes, J.T. & Chayes, L. The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation. Commun.Math. Phys. 131, 1–50 (1990). https://doi.org/10.1007/BF02097679

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097679

Keywords

Navigation