Skip to main content
Log in

Constructing large feasible suboptimal intervals for constrained nonlinear optimization

  • Global Optimization
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

An algorithm for finding a large feasiblen-dimensional interval for constrained global optimization is presented. Then-dimensional interval is iteratively enlarged about a seed point while maintaining feasibility. An interval subdivision method may be used to check feasibility of the growing box. The resultant feasible interval is constrained to lie within a given level set, thus ensuring it is close to the optimum. The ability to determine such a feasible interval is useful for exploring the neighbourhood of the optimum, and can be practically used in manufacturing considerations. The numerical properties of the algorithm are tested and demonstrated by an example problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and J. Herzberger,Introduction to Interval Calculations (Academic Press, New York, 1983).

    Google Scholar 

  2. J.H. Bleher, S.M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich and W. Walter,Fortran-sc. A study of aFortran extension for engineering/scientific computation with access toAcrith, Computing 39(1987)93–110.

    Google Scholar 

  3. J.D. Buys and F. Gonin, The use of augmented Lagranian functions for sensitivity analysis in nonlinear programming, Math. Progr. 12(1977)281–284.

    Article  Google Scholar 

  4. T. Csendes, An interval method for bounding level sets of parameter estimation problems, Computing 41(1989)75–86.

    Google Scholar 

  5. T. Csendes, Interval method for bounding level sets: Revisited and tested with global optimization problems, BIT 30(1990)650–657.

    Article  Google Scholar 

  6. T. Csendes and J. Pintér, A new interval method for locating the boundary of level sets, Int. J. Comp. Math. 49(1993)53–59.

    Google Scholar 

  7. A.V. Fiacco, Sensitivity analysis for nonlinear programming using penalty methods, Math. Progr. 12(1976)287–311.

    Article  Google Scholar 

  8. C.A. Floudas and P.M. Pardalos,A Collection of Test Problems for Constrained Global Optimization Algorithms, Lecture Notes in Computer Science 455 (Springer, New York, 1990).

    Google Scholar 

  9. H.-P. Jüllig, BIBINS/2.0 — C++ Bibliotheken für Vektoren und Matrizen über beliebigem skalaren Datentyp unter Berücksichtigung spezieller spärlicher Strukturen sowie Intervalldatentypen, Bericht 92.6, Technical University of Hamburg-Harburg (1992).

  10. R.B. Kearfott, An interval branch and bound algorithm for bound constrained optimization problems, J. Global Optim. 2(1992)259–280.

    Article  Google Scholar 

  11. R. Klatte, U. Kulisch, M. Neaga, D. Ratz and Ch. Ullrich,Pascal-xxc — Language Reference with Examples (Springer, Berlin, 1992).

    Google Scholar 

  12. Z. Kovács, F. Friedler and L.T. Fan, Recycling in a separation process structure, AIChE J. 39(1993)1087–1089.

    Article  Google Scholar 

  13. B.P. Kristinsdottir, Z.B. Zabinsky, T. Csendes and M.E. Tuttle, Methodologies for tolerance intervals, Interval Comp. 3(1993)133–147.

    MathSciNet  Google Scholar 

  14. Ch. Lawo, C-XSC — A programming environment for verified scientific computing and numerical data processing, Manuscript, University of Karlsruhe (1991).

  15. K.R. Lutchen and A.C. Jackson, Confidence bounds on respiratory mechanical properties estimated from transfer versus input impedance in humans versus dogs, IEEE Trans. Biomed. Eng. 39(1992)644–651.

    Article  PubMed  Google Scholar 

  16. P.M. Pardalos and J.B. Rosen,Constrained Global Optimization, Algorithms and Applications, Lecture Notes in Computer Science 268 (Springer, Berlin, 1987).

    Google Scholar 

  17. H. Ratschek and J. Rokne,Computer Methods for the Range of Functions (Ellis Horwood, Chichester, 1984).

    Google Scholar 

  18. H. Ratschek and J. Rokne, Experiments using interval analysis for solving a circuit design problem, J. Global Optim. 3(1993)501–518.

    Article  Google Scholar 

  19. Z.B. Zabinsky, D.L. Graesser, M.E. Tuttle and G.I. Kim, Global optimization of composite laminates using improving hit-and-run, in:Recent Advances in Global Optimization, ed. C.A. Floudas and P.M. Pardalos (Princeton University Press, Princeton, 1992) pp. 343–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Grants OTKA 2879/1991 and OTKA 2675/1991, and in part by NSF Grant DDM-9211001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csendes, T., Zabinsky, Z.B. & Kristinsdottir, B.P. Constructing large feasible suboptimal intervals for constrained nonlinear optimization. Ann Oper Res 58, 279–293 (1995). https://doi.org/10.1007/BF02096403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096403

Keywords

AMS subject classification

Navigation