Skip to main content
Log in

Characterization of aMethanosarcina strain isolated from goat feces, and that grows on H2-CO2 only after adaptation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

AMethanosarcina species, designated strain ChGul, was isolated from goat feces; this is the first fully described pure culture ofMethanosarcina obtained from feces. Antigenic fingerprinting suggests that isolate ChGul is a new immunotype. The mol% G + C content of DNA was 42.2%. Strain ChGul grew on methanol, methylamines, and acetate in a minimal salts medium. It grew on H2-CO2 only after adaptation. Growth occurred as a milky-white suspension and contained cells mostly in doublets and quadruplets of irregular cocci; many cells contained phase bright spots typical of gas vacuoles. The isolate did not grow on formate, or CO2 plus isopropanol, ethanol, or acetone as substrates and did not produce methane from formate. The optimum growth temperature was 35–37°C, and optimum pH was 6.2–6.8. ChGul is unusually sensitive to sulfide and has low tolerance for NaCl. Optimal levels of total sulfide and NaCl for growth were 0.5 mM and 20–40 mM, respectively. Since ChGul requires adaptation for growth on H2-CO2 and cannot use formate, it may be restricted to methylotropic or acetoclastic methanogenesis in the rumen, a function not observed in previously isolated rumen methanogens that use H2-CO2 and formate. Our work suggests that improper NaCl and sulfide concentrations, and cell lysis, may have made isolation of rumenMethanosarcina difficult in the past. It also underscores the need to evaluate feed compositions and media components for most probable number studies, with respect to NaCl and sulfide levels, to understand the role ofMethanosarcina in the rumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Archer DB, King NR (1983) Isolation of gas vesicles fromMethanosarcina barkeri. J Gen Microbiol 130:167–172

    Google Scholar 

  2. Archer DB, King NR (1983) A novel ultrastructural feature of a gas-vacuolatedMethanosarcina. FEMS Microbiol Lett 16:217–223

    Google Scholar 

  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology, Vol 1. Greene Publishing Associates and Wiley-Interscience. New York: John Wiley & Sons

    Google Scholar 

  4. Balch WE, Wolfe RS (1976) A new approach to the cultivation of methanogenic bacteria: 2-mercaptoethane sulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  Google Scholar 

  5. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  Google Scholar 

  6. Beijer WH (1952) Methane fermentation in the rumen of cattle. Nature 170:576–577

    PubMed  Google Scholar 

  7. Belay N, Daniels L (1987) Production of ethane, ethylene and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol 53:1604–1610

    Google Scholar 

  8. Biavati B, Vasta M, Ferry JG (1988) Isolation and characterization of “Methanosphaera cuniculi” sp. nov. Appl Environ Microbiol 54:768–771

    PubMed  Google Scholar 

  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    PubMed  Google Scholar 

  10. Bray AC, Hemsly JA (1969) Sulfur metabolism of sheep IV: effects of varied diet sulfur content on body fluid sulfur level, and on use of urea-supplemented roughage by sheep. Aust J Agric Res 20:759–773

    Google Scholar 

  11. Caldwell DR, Hudson RF (1974) Sodium, an obligate requirement for predominant rumen bacteria. Appl Environ Microbiol 27:549–552

    Google Scholar 

  12. Cruden DL, Markovetz AJ (1981) Relative number of selective bacterial forms in different regions of the cockroach hindgut. Arch Microbiol 129:129–134

    Google Scholar 

  13. Daniels L, Belay N, Mukhopadhyay B (1984) Considerations for the use and large-scale growth of methanogenic bacteria. In: Scott CD (ed) Proceedings of the sixth symposium on biotechnology in fuels and chemicals. Biotechnology and Bioengineering sysposium no. 14. New York: John Wiley and Sons, pp 199–213

    Google Scholar 

  14. Daniels L, Belay N, Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51:703–709

    PubMed  Google Scholar 

  15. Fiebig K, Gottschalk G (1983) Methanogenesis from choline by a coculture ofDesulfovibrio sp. andMethanosarcina barkeri. Appl Environ Microbiol 45:161–168

    Google Scholar 

  16. Genthner BRS, Davis CL, Bryant MP (1981) Features of rumen and sewage sludge strains ofEubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl Environ Microbiol 42:12–19

    PubMed  Google Scholar 

  17. Jones WJ, Whitman WB, Fields RD, Wolfe RS (1983) Growth and plating efficiency of methanococci on agar media. Appl Environ Microbiol 46:220–226

    Google Scholar 

  18. Lajoie SF, Bank S, Miller TS, Wolin MJ (1988) Acetate production from hydrogen and13C-carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54:2723–2727

    PubMed  Google Scholar 

  19. Lovely DR, Greening RC, Ferry JG (1984) Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl Environ Microbiol 48:81–87

    PubMed  Google Scholar 

  20. Macario AJL, Conway de Macario E (1983) Antigenic fingerprinting of methanogenic bacteria with polyclonal antibody probe. Syst Appl Microbiol 4:451–458

    Google Scholar 

  21. Macario AJL, Conway de Macario E (1985) Monoclonal antibodies of predefined molecular specificity for identification and classification of methanogens and for probing their ecologic niches. In: Macario AJL, Conway de Macario E (eds) Monoclonal antibodies against bacteria, vol 2. New York: Academic Press, pp 213–247

    Google Scholar 

  22. Maczulak AE, Wolin MJ, Miller TL (1989) Increase in colonic methanogens and total anaerobes in aging rats. Appl Environ Microbiol 55:2468–2473

    PubMed  Google Scholar 

  23. Mah RA, Kuhn DA (1984) Transfer of the type species of the genusMethanococcus to the genusMethanosarcina, naming itMethanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genusMethanococcus (approved lists 1980) withMethanococcus vannielii (approved lists 1980) as the type species. Int J Syst Bacteriol 34:263–265

    Google Scholar 

  24. Mah RA, Smith MR (1981) The methanogenic bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. New York: Springer Verlag, pp 948–977

    Google Scholar 

  25. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    PubMed  Google Scholar 

  26. McInerny MJ, Mackie RI, Bryant MP (1981) Syntrophic association of butyrate-degrading bacterium andMethanosarcina enriched from bovine rumen fluid. Appl Environ Microbiol 41:826–828

    PubMed  Google Scholar 

  27. Miller TL, Wolin MJ (1985)Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    PubMed  Google Scholar 

  28. Miller TL, Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst Appl Microbiol 7:223–229

    Google Scholar 

  29. Miller TL, Wolin MJ, Conway de Macario E, Macario AJL (1982) Isolation ofMethanobrevibacter smithii from human feces. Appl Environ Microbiol 43:227–232

    PubMed  Google Scholar 

  30. Mountfort DO, Asher RA (1979) Effect of inorganic sulfide on the growth and metabolism ofMethanosarcina barkeri strain DM. Appl Environ Microbiol 37:670–675

    PubMed  Google Scholar 

  31. Neil AR, Grime DW, Dawson RMC (1978) Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem J 170:529–535

    PubMed  Google Scholar 

  32. Oremland RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. New York: John Wiley & Sons, pp 641–705

    Google Scholar 

  33. Patel GB, Roth LA (1977) Effect of sodium chloride on growth and methane production of methanogens. Can J Microbiol 23:893–897

    PubMed  Google Scholar 

  34. Patel GB, Sprott GD (1990)Methanosaeta concilii gen. nov., sp. nov. (Methanothrix concilii) andMethanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82

    Google Scholar 

  35. Patterson JA, Hespell RB (1979) Trimethylamine and methylamine as growth substrates for rumen bacteria andMethanosarcina barkeri. Curr Microbiol 3:79–83

    Google Scholar 

  36. Paynter MJB, Hungate RE (1968) Characterization ofMethanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951

    PubMed  Google Scholar 

  37. Pol A, Demeyer DI (1988) Fermentation of methanol in the sheep rumen. Appl Environ Microbiol 54:832–834

    PubMed  Google Scholar 

  38. Rajagopal BS, Daniels L (1986) Investigations of mercaptans, organic sulfides, and inorganic sulfur compounds as sulfur sources for the growth of methanogenic bacteria. Curr Microbiol 14:137–144

    Google Scholar 

  39. Rajagopal BS, Belay N, Daniels L (1988) Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol 53:153–158

    Google Scholar 

  40. Robinson DG, Ehlers U, Herken R, Herrmann B, Mayer F, Schuermann F-W (1987) Methods for preparation for electron microscopy. New York: Springer Verlag

    Google Scholar 

  41. Rowe JB, Loughnan ML, Nolan JV, Leng RA (1979) Secondary fermentation in the rumen of a sheep given a diet based on molasses. Br J Nutr 41:393–396

    PubMed  Google Scholar 

  42. Scherer P, Sahm H (1981) Influence of sulfur containing compounds on the growth ofMethanosarcina barkeri in a defined medium. Eur J Appl Microbiol Biotechnol 12:28–35

    Google Scholar 

  43. Schink B, Zeikus JG (1980) Microbial methanol formation: a major end product of pectin metabolism. Curr Microbiol 4:387–389

    Google Scholar 

  44. Smith MR, Mah RA (1978) Growth and methanogenesis byMethanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 36:870–879

    PubMed  Google Scholar 

  45. Smith PH, Hungate RE (1958) Isolation and characterization ofMethanobacterium ruminantium n. sp. J Bacteriol 75:713–718

    PubMed  Google Scholar 

  46. Sowers KR, Gunsalus RP (1988) Adaptation for growth at various saline concentration by the archaebacteriumMethanosarcina thermophila. J Bacteriol 170:998–1002

    PubMed  Google Scholar 

  47. Sowers KR, Baron SF, Ferry JG (1984)Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    Google Scholar 

  48. Sowers KR, Johnson JL, Ferry JG (1984) Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the family ofMethanosarcina. Int J Syst Bacteriol 34:444–450

    Google Scholar 

  49. Touzel JP, Petroff D, Albagnac G (1985) Isolation and characterization of a new thermophilicMethanosarcina, the strain CHTI55. Sys Appl Microbiol 6:66–71

    Google Scholar 

  50. Vicini JL, Brulla WJ, Davis CL, Bryant MP (1987) Quin's oval and other microbiota in the rumens of molasses-fed sheep. Appl Environ Microbiol 53:1273–1276

    PubMed  Google Scholar 

  51. Weimer PJ, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria. Arch Microbiol 119:49–57

    PubMed  Google Scholar 

  52. Zhilina TN, Zavarzin GA (1987)Methanosarcina vaculolata sp. nov., a vacuolatedMethanosarcina. Int J Syst Bacteriol 37:281–283

    Google Scholar 

  53. Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain ofMethanosarcina unable to use H2-CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008

    Google Scholar 

  54. Zinder SH, Sowers KR, Ferry JG (1985)Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methaneproducing bacterium. Int J Syst Bacteriol 35:522–523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, B., Purwantini, E., Conway de Macario, E. et al. Characterization of aMethanosarcina strain isolated from goat feces, and that grows on H2-CO2 only after adaptation. Current Microbiology 23, 165–173 (1991). https://doi.org/10.1007/BF02091977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02091977

Keywords

Navigation