Skip to main content
Log in

Invariant manifolds and the behavior of dynamic systems with symmetry near the boundary of the region of stability

  • Published:
International Applied Mechanics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. N. Bautin, Behavior of Dynamic Systems Near the Boundaries of a Region of Stability, Nauka, Moscow (1984).

    Google Scholar 

  2. N. N. Brushlinskaya, “Qualitative integration of one system of n differential equations in a region containing a singular point and a limit cycle,” Dokl. Akad. Nauk SSSR,139, No. 1, 9–12 (1961).

    Google Scholar 

  3. N. V. Butenin, Yu. I. Neimark, and N. A. Fufaev, Introduction to the Theory of Nonlinear Vibration [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  4. G. V. Gorr, A. A. Ilyukhin, A. M. Kovalev, and A. Ya. Savchenko, Nonlinear Analysis of the Behavior of Mechanical Systems, Nauk. Dumka, Kiev (1984).

    Google Scholar 

  5. A. M. Kovalev, Nonlinear Problems of Control and Observation in the Theory of Dynamical Systems [in Russian], Nauk. Dumka, Kiev (1980).

    Google Scholar 

  6. T. Levi-Civita and W. Amaldi, Course in Theoretical Mechanics, [Russian translation], Vol. 2, Pt. 2, IL, Moscow (1951).

    Google Scholar 

  7. L. G. Lobas and V. G. Khrebet, “Existence and uniqueness of the periodic motion pendulum-type two-component systems undergoing oscillation,” Izv. Russ. Akad. Nauk Mekh. Tverd. Tela., No. 5, 23–31 (1993).

    Google Scholar 

  8. L. G. Lobas and V. G. Khrebet, “Bifurcation of the formation of the limit cycle and evaluation of the region of attraction in oscillating two-component systems of the pendulum type,” Izv. Russ. Akad. Nauk Mekh. Tverd. Tela., No. 3, 61–66 (1994).

    Google Scholar 

  9. L. G. Lobas and V. G. Khrebet, “Integral manifold of a problem concerning Andronov—Hopf bifurcation in oscillating two-component systems of the pendulum type,” Prikl. Mekh.,30, No. 7, 85–93 (1994).

    Google Scholar 

  10. A. M. Lyapunov, Collected Works [in Russian], Vol. 2, Izd. AN SSSR, Moscow, Leningrad (1956).

    Google Scholar 

  11. I. G. Malkin, Liapunov and Poincaré Methods in the Theory of Nonlinear Vibration, GITTL, Moscow, Leningrad (1949).

    Google Scholar 

  12. I. G. Malkin, “Method of solving the problem of stability in the critical case of a pair of purely imaginary roots,” Prikl. Mat. Mekh.,15, No. 4, 473–484 (1951).

    Google Scholar 

  13. J. Marsden and M. McCracken, Bifurcation of Cycle Formation and Its Application [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  14. Yu. I. Neimark, “Certain cases of the dependence of periodic motions on parameters,” Dokl. Akad. Nauk SSSR,129, No. 4, 736–739 (1959).

    Google Scholar 

  15. V. A. Pliss, “Reduction principle in the theory of the stability of motion,” Izv. Akad. Nauk SSSR Ser. Mat.,28, No. 5, 12976–1323 (1964).

    Google Scholar 

  16. V. N. Truzhennikova, “Conditions of excitation of periodic motion from the equilibrium state,” Izv. Vyssh. Uchebn. Zaved. Radiofiz.,5, No. 2, 356–361 (1962).

    Google Scholar 

  17. L. Z. Fishman, “Criterion for determining dangerous and safe boundaries of the region of stability of systems with a lag,” Avtom. Telemekh., No. 10, 185–187 (1987).

    Google Scholar 

  18. P. V. Kharlamov, “Invariant relations of a system of differential equations,” Mekh. Tverd. Tela., No. 6, 15–24 (1974).

    Google Scholar 

  19. M. Kholodniok, A. Klich, M. Kubichek, and M. Marek, Methods of Analyzing Nonlinear Dynamic Models [Russian translation], Mir, Moscow (1991).

    Google Scholar 

  20. H. Troger and A. Steindl, Nonlinear Stability and Bifurcation Theory, Springer-Verlag, Vienna - New York (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Mekhanika, Vol. 32, No. 5, pp. 81–88, May, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobas, L.G. Invariant manifolds and the behavior of dynamic systems with symmetry near the boundary of the region of stability. Int Appl Mech 32, 395–401 (1996). https://doi.org/10.1007/BF02091365

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02091365

Keywords

Navigation