Skip to main content
Log in

Mercury (Hg2+) and zinc (Zn2+): Two divalent cations with different actions on voltage-activated calcium channel currents

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. We examined the actions of mercury (Hg2+) and zinc (Zn2+) on voltage-activated calcium channel currents of cultured rat dorsal root ganglion (DRG) neurons, using the whole-cell patch clamp technique.

2. Micromolar concentrations of both cations reduced voltage-activated calcium channel currents. Calcium channel currents elicited by voltage jumps from a holding potential of −80 to 0 mV (mainly L- and N-currents) were reduced by Hg2+ and Zn2+. The threshold concentration for Hg2+ effects was 0.1 µM and that for Zn2+ was 10µM. Voltage-activated calcium channel currents were abolished (>80%) with 5µM Hg2+ or 200µM Zn2+. The peak calcium current was reduced to 50% (IC50) by 1.1µM Hg2+ or 69µM Zn2+. While Zn2+ was much more effective in reducing the T-type calcium channel current—activated by jumping from −80 to −35 mV—Hg2+ showed some increased effectiveness in reducing this current.

3. The effects of both cations occurred rapidly and a steady state was reached within 1–3 min. While the action of Zn2+ was not dependent on an open channel state, Hg2+ effects depended partially on channel activation.

4. While both metal cations reduced the calcium channel currents over the whole voltage range, some charge screening effects were detected with Hg2+ and with higher concentrations (>100µM) of Zn2+.

5. As Zn2+ in the concentration range used had no influence on resting membrane currents, Hg2+ caused a clear inward current at concentrations ⩾µM.

6. In the present study we discuss whether the actions of both metals on voltage-activated calcium channel currents are mediated through the same binding site and how they may be related to their neurotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, J. W., Kallenbach, L. R., Fine, L. J., Langwolf, G. D., Wolfe, R. A., Donogrio, P. D., Alessi, A. G., Stolp-Smith, K. A., and Bromberg, M. B. (1988). Neurological abnormalities associated with remote occupational elemental mercury exposure.Ann. Neurol. 5:651–659.

    Google Scholar 

  • Arakawa, O., Nakahiro, M., and Narahashi, T. (1991). Mercury modulation of GABA-activated chloride channels and non-specific cation channels in rat dorsal root ganglion neurons.Brain Res. 551:58–63.

    Google Scholar 

  • Arvidson, B. (1992). Accumulation of inorganic mercury in lower motoneurons of mice.Neurotoxicology 13:277–280.

    Google Scholar 

  • Atchison, W. D., Joshi, U., and Thornburg, J. E. (1986). Irreversible suppression of calcium entry into nerve terminals by methylmercury.J. Pharmacol. Exp. Ther. 238:618–624.

    Google Scholar 

  • Büsselberg, D., Evans, M. L., Rahmann, H., and Carpenter, D. O. (1990). Zn2− blocks the voltage-activated calcium current ofAplysia neurons.Neurosci. Lett. 117:117–122.

    Google Scholar 

  • Büsselberg, D., Evans, M. L., Rahmann, H., and Carpenter, D. O. (1991a). Effects of inorganic and trietyl lead and inorganic mercury on the voltage-activated calcium channel ofAplysia neurons.Neurotoxicology 12:733–744.

    Google Scholar 

  • Büsselberg, D., Evans, M. L., Rahmann, H., and Carpenter, D. O. (1991b). Lead and zinc block a voltage-activated calcium channel ofAplysia neurons.J. Neurophysiol. 65: 786–795.

    Google Scholar 

  • Büsselberg, D., Michael, D., Evans, M. L., Carpenter, D. O., and Haas, H. L. (1992). Zinc (Zn2+) blocks voltage gated calcium channels in cultured rat dorsal root ganglion cells.Brian Res. 593:77–81.

    Google Scholar 

  • Büsselberg, D., Platt, B., Haas, H. L., and Carpenter, D. O. (1993). Voltage gated calcium channel currents of rat dorsal root ganglion (DRG) cells are blocked by Al3+.Brain Res. 622:163–168.

    Google Scholar 

  • Büsselberg, D., Platt, B., Michael, D., Carpenter, D. O., and Haas, H. L. (1994). Mammalian voltage-activated calcium channel currents are blocked by Pb2+, Zn2+ and Al3+.J. Neurophysiol. 71:1491–1497.

    Google Scholar 

  • Carty, A. J., and Malone, S. F. (1979). The chemistry of mercury in biological systems. In Nriagu, J. O. (ed.),The Biogeochemistry of Mercury in the Environment, Elsevier Biomedical Press, New York, pp. 433–480.

    Google Scholar 

  • Chad, J. E., and Eckert, R. (1986). An enzymatic mechanism for calcium current inactivation in dialysed Helix neurones.J. Physiol. Lond. 378:31–51.

    Google Scholar 

  • Choi, D. W., Yokoyama, M., and Koh, J. (1988). Zinc neurotoxicity in cortical cell culture.Neuroscience 24:67–79.

    Google Scholar 

  • Constantinidis, J. (1991). The hypothesis of zinc deficiency in the pathogenesis of neurofibrillary tangles.Med. Hypotheses 35:319–323.

    Google Scholar 

  • Evans, M. L., Büsselberg, D., and Carpenter, D. O. (1991). Pb2+ blocks calcium currents of cultured dorsal root ganglion cells.Neurosci. Lett. 129:103–106.

    Google Scholar 

  • Fisher, R. E., Gray, R., and Johnston, D. (1990). Properites and distribution of single voltage-gated calcium channels in adult hippocampal neurons.J. Neurophysiol. 64:91–104.

    Google Scholar 

  • Fjerdingstad, E., Danscher, G., and Fjerdingstad, E. J. (1974). Zinc content in hippocampus and whole brain of normal rats.Brain Res. 79:338–342.

    Google Scholar 

  • Forsythe, I. D., Westbrook, G. L., and Mayer, M. L. (1988). Modulation of excitatory synaptic transmission by glycine and zinc in cultures of mouse hippocampal neurons.J. Neurosci. 8:3733–3741.

    Google Scholar 

  • Gilly, W. F., and Armstrong, C. M. (1982a). Slowing of sodium channel opening kinetics in squid axon by extracellular zinc.J. Gen. Physiol. 79:935–964.

    Google Scholar 

  • Gilly, W. F., and Armstrong, C. M. (1982b). Divalent cations and the activation kinetics of potassium channels in squid giant axons.J. Gen. Physiol. 79:965–996.

    Google Scholar 

  • Gutknecht, J. (1981). Inorganic Mercury (Hg2+) transport through Lipid bilayer membranes.Memb. Biol. 61:61–66.

    Google Scholar 

  • Halas, E. S., Hunt, C. D., and Eberhardt, M. J. (1986). Learning and memory disabilities in young adult rats from mildly zinc deficient dams.Physiol. Behav. 37:451–458.

    Google Scholar 

  • Hare, M. F., Rezazadeh, S. M., Cooper, G. P., Minnema, D. J., and Michaelson, I. A. (1990). Effects of inorganic mercury on [3H] dopamine release and calcium homeostasis in rat striatal synaptosomes.Toxicol. Appl. Pharmacol. 86:316–330.

    Google Scholar 

  • Hesse, G. W. (1979). Chronic zinc deficiency alters neuronal function of hippocampal mossy fibers.Science 205:1005–1007.

    Google Scholar 

  • Hewett, S. J., and Atchison, W. D. (1992). Effects of charge and lipophilicity on mercurial-induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat.Toxicol. Appl. Pharmacol. 113:267–273.

    Google Scholar 

  • Hori, N., Galeno, T., and Carpenter, D. O. (1987). Responses of pyriform cortex neurons to excitatory amino acids: Voltage dependence, conductance changes, and effects of divalent cations.Cell. Mol. Neurobiol. 7:73–90.

    Google Scholar 

  • Koh, J. Y., and Choi, D. W. (1988). Zinc alters excitatory amino acid neurotoxicity on cortical neurons.J. Neurosci. 8:2164–2171.

    Google Scholar 

  • Kuznetov, D. A., and Richter, V. (1987). Modulation of messanger RNA metabolism in experimental methyl mercury neurotoxicity.J. Neurosci. 34:1–17.

    Google Scholar 

  • Kuznetov, D. A., Zavijalov, N. V., Gororkov, A. V., and Silileva, T. M. (1987). Methyl mercury induced nonselective blocking of phosphorylation processes as a possible cause of protein synthesis inhibition in vitro and in vivo.Toxicol. Lett. 36:153–160.

    Google Scholar 

  • Lipscombe, D., Madison, D. V., Poenie, M., Reuter, H., Tsien, R. Y., and Tsien, R. W. (1988). Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons.Proc. Natl. Acad. Sci. USA 85:2398–2402.

    Google Scholar 

  • Mangour, S. (1987). Studies on the inhibition of brain synaptosomal Na/K-ATPase by mercury chloride and methyl mercury chloride.Arch. Toxicol. 9:393–396.

    Google Scholar 

  • Manalis, R. S., and Cooper, G. P. (1975). Evoked transmitter release increased by inorganic mercury at frog neuromuscular junction.Nature 257:690–691.

    Google Scholar 

  • Möller Madsen, B. (1992). Localization of mercury in the CNS of the rat. V. Inhalation exposure to metallic mercury.Arch. Toxicol. 66:79–89.

    Google Scholar 

  • Nachsen, D. A. (1984). Selectivity of the Ca binding site in synaptosome Ca channels. Inhibition of Ca influx by multivalent metal cations.J. Gen. Physiol. 83:941–967.

    Google Scholar 

  • Nishimura, M. (1988). Zn2+ simulates spontaneous transmitter release at mouse neuromuscular junctions.Br. J. Pharmacol. 93:430–436.

    Google Scholar 

  • Pekel, M., Platt, B., and Büsselberg, D. (1993). Mercury (Hg2−) decreases voltage gated calcium channel currents in rat DRG andAplysia neurons.Brain Res. 632:121–126.

    Google Scholar 

  • Peters, S., Koh, J., and Choi, D. W. (1987). Zinc selectively blocks the actionof N-methyl-D-aspartate on cortical neurons.Science 236:589–593.

    Google Scholar 

  • Petit, T. L., and LeBoutillier, J. C. (1986). Zinc deficiency in the postnatal rat: implications for lead toxicity.Neurotoxicology 7:237–246.

    Google Scholar 

  • Smart, T. G., and Constanti, A. (1982). A novel effect of zinc on the lobster muscle GABA receptor.Proc. R. Soc. Lond. Biol. 215:327–341.

    Google Scholar 

  • Tsien, R. W., Fox, A. P., Hess, P., McCleskey, E. W., Nilius, B., Nowychy, M. C., and Rosenberg, R. L. (1987). Multiple types of calcium channels in excitable cells.Soc. Gen. Physiol. Ser 41:167–187.

    Google Scholar 

  • Umbach, J. A., and Gunderson, C. B. (1989). Mercuric ions are potent noncompetitive antagonists of human brian kainate receptors expressed inXenopus oocytes.Mol. Pharmacol. 36:582–588.

    Google Scholar 

  • Weiss, J. H., Hartley, D. M., Koh, J. Y., and Choi, D. W. (1993). AMPA receptor activation potentiates zinc neurotoxicity.Neuron 10:43–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büsselberg, D., Pekel, M., Michael, D. et al. Mercury (Hg2+) and zinc (Zn2+): Two divalent cations with different actions on voltage-activated calcium channel currents. Cell Mol Neurobiol 14, 675–687 (1994). https://doi.org/10.1007/BF02088676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088676

Key words

Navigation