Skip to main content
Log in

Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptors

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. The hippocampus is an important brain structure for working and spatial memory in animals and humans, and it is also a vulnerable as well as plastic brain structure as far as sensitivity to epilepsy, ischemia, head trauma, stress, and aging.

2. The hippocampus is also a target brain area for the actions of hormones of the steroid/thyroid hormone family, which traditionally have been thought to work by regulating gene expression. “Genomic” actions of steroid hormones involve intracellular receptors, whereas “nongenomic” effects of steroids involve putative cell surface receptors. Although this distinction is valid, it does not go far enough in addressing the variety of mechanisms that steroid hormones use to produce their effects on cells. This is because cell surface receptors may signal changes in gene expression, while genomic actions sometimes affect neuronal excitability, often doing so quite rapidly.

3. Moreover, steroid hormones and neurotransmitters may operate together to produce effects, and sometimes these effects involve collaborations between groups of neurons. For example, a number of steroid actions in the hippocampus involve the coparticipation of excitatory amino acids. These interactions are evident for the regulation of synaptogenesis by estradiol in the CA1 pyramidal neurons of hippocampus and for the induction of dendritic atrophy of CA3 neurons by repeated stress as well as by glucocorticoid injections. In addition, neurogenesis in the adult and developing dentate gyrus is “contained” by adrenal steroids as well as by excitatory amino acids. In each of these three examples, NMDA receptors are involved.

4. These results not only point to a high degree of interdependency between certain neurotransmitters and the actions of steroid hormones, but also emphasize the degree to which structural plasticity is an important aspect of steroid hormone action in the adult as well as developing nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akana, S., Shinaki, J., and Dallman, M. (1983). Drug-induced arenal hypetrophy provies evidence for reset in the adrenocortical system.Endocrinology 1132232–2237.

    PubMed  Google Scholar 

  • AusDerMuhlen, K., and Ockenfels, H. (1969). Morphologische veranderungen im diencephalon und telencephalon: storungen des regelkreises adenohypophysenebennierenrinde.Z. Zellforsch. Mikrosck. Anat. 93126–141.

    Google Scholar 

  • Axelson, D., Doraiswamy, A. P., McDonald, W., Boyko, O., Typler, L., Patterson, Nemeroff, C. B., Ellinwood, E. H., and Krishan, K. R. R. (1993). Hypercortisolemia and hippocampal changes in depression.Psychiatry Res. 47163–173.

    PubMed  Google Scholar 

  • Bliss, T. V. P., and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus.Nature 36131–39.

    PubMed  Google Scholar 

  • Boyle, M., MacLusky, N., Naftolin, F., and Kaczmarek, L. (1987). Hormonal regulation of K+-channel messenger RNA in rat myometrium during oestrus cycle and in pregnancy.Nature 330373–375.

    PubMed  Google Scholar 

  • Cameron, H. A., McEwen, B. S., and Gould, E. (1995). Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus.J. Neurosci. 154687–4692.

    PubMed  Google Scholar 

  • Cammermeyer, J. (1978). Is the solitary dark neuron a manifestation of postmortem trauma to the brain inadequately fixed by perfusion?Histochemistry 5697–115.

    PubMed  Google Scholar 

  • DeVries, G. J. (1991). Sex differences in neurotransmitter systems.J. Neuroendocrinol. 21–14.

    Google Scholar 

  • Eichenbaum, H., and Otto, T. (1992). The hippocampus—What does it do?Behav. Neural Biol. 572–36.

    PubMed  Google Scholar 

  • Frye, C. A., and DeBold, J. F. (1992). 3a-OH-DHP and 5a-THDOC implants to the VTA facilitate sexual receptivity in hamsters after progesterone priming to the VMH.Brain Res. 612130.

    Google Scholar 

  • Gee, K. (1988). Steroid modulation of the GABA/benzodiazepine receptor-linked chloride ionophore.Mol. Neurobiol. 2291–317.

    PubMed  Google Scholar 

  • Gould, E., and McEwen, B. S. (1993). Neuronal birth and death.Cur. Opin. Neurobiol. 3676–682.

    Google Scholar 

  • Hsu, M., and Buzsaki, G. (1993). Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia.J. Neurosci. 133964–3979.

    PubMed  Google Scholar 

  • Imaki, T., Nahan J.-L., Rivier, C., Sawchenko, P., and Vale, W. (1991). Differential regulation of corticotropin-releasing factor mRNA in rat brain regions by glucocorticoids and stress.J. Neurosci. 11585–599.

    PubMed  Google Scholar 

  • Joels, M., and DeKloet, E. R. (1991). Control of neuronal excitability by corticosteroid hormones.Trends Neurosci. 1525–30.

    Google Scholar 

  • Krugers, H. J., Jaarsma, D., and Korf, J. (1992). Rat hippocampal lactate efflux during electroconvulsive shock or stress is differently dependent on entorhinal cortex and adrenal integrity.J. Neurochem. 58826–830.

    PubMed  Google Scholar 

  • Landfield, P. (1987). Modulation of brain aging correlates by long-term alterations of adrenal steroids and neurally-active peptides.Prog. Brain Res. 72279–300.

    PubMed  Google Scholar 

  • Lowenstein, D., Thomas, M. J., Smith, D. H., and McIntosh, T. K. (1992). Selective vulnerability of dentate hilar neurons following traumatic brain injury: A potential mechanistic link between head trauma and disorders of the hippocampus.J. Neurosci. 124846–4853.

    PubMed  Google Scholar 

  • Lowy, M. T., Gault, L., and Yamamoto, B. K. (1993). Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus.J. Neurochem. 611957–1960.

    PubMed  Google Scholar 

  • Luine, V., Villegas, M., Martinez, C., and McEwen, B. S. (1994). Repeated stress causes reversible impairments of spatial memory performance.Brain Res. 639167–170.

    PubMed  Google Scholar 

  • Magarinos, A. M., and McEwen, B. S. (1995). Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Involvement of glucocorticoid secretion and excitatory amino acid receptors.Neuroscience 6989–98.

    PubMed  Google Scholar 

  • McCarthy, M., Corini, H., Schumacher, M., Johnson, A., Pfaff, D., Schwartz-Giblin, S., and McEwen, B. S. (1992). Steroid regulation and sex differences in [3H]muscimol binding in hippocampus, hypothalamus and midbrain in rats.J. Neuroendocrinol. 4393–399.

    Google Scholar 

  • McEwen, B. S. (1991). Steroids affect neural activity by acting on the membrane and the genome.Trends Pharmacol. Sci. 12141–147.

    PubMed  Google Scholar 

  • McEwen, B. S. (1994a). Corticosteroids and hippocampal plasticity.Ann. N.Y. Acad. Sci. 746134–144.

    PubMed  Google Scholar 

  • McEwen, B. S. (1994b). How do sex and stress hormones affect nerve cells?Ann. N.Y. Acad. Sci. 7431–18.

    PubMed  Google Scholar 

  • McEwen, B. S., and Woolley, C. S. (1994). Oestradiol and progesterone regulate neuronal structure and synaptic connectivity in adult as well as developing brain.Exp. Gerontol. 29431–436.

    PubMed  Google Scholar 

  • McEwen, B. S., Krey, L., and Luine, V. (1978). Steroid hormone action in the neuroendocrine system: When is the genome involved? InThe Hypothalamus (R. Reichlin, R. Baldessarini, and J. Martin, Eds), Raven Press, New York, pp. 255–268.

    Google Scholar 

  • McEwen, B. S., DeKloet, E. R., and Rostene, W. (1986). Adrenal steroid receptors and actions in the nervous system.Physiol. Rev. 661121–1188.

    PubMed  Google Scholar 

  • Meyer, T. E., and Habener, J. F. (1993). Cyclic adenosine 3′,5′-monophosphate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins.Endocrinol. Rev. 14269–290.

    Google Scholar 

  • Miller, M. A., Urban, J. H., and Dorsa, D. M. (1989). Steroid dependency of vasopressin neurons in the bed nucleus of the stria terminalis by the in situ hybridization.Endocrinology 1252335–2340.

    PubMed  Google Scholar 

  • Miner, J. N., Diamond, M. I., and Yamamoto, K. R. (1991). Joints in the regulatory lattice: Composite regulation by steroid receptor-AP1 complexes.Cell Growth Diff. 2525.

    PubMed  Google Scholar 

  • Mondadori, C., and Weiskrantz, L. (1993). NMDA receptor blockers facilitate and impair learning via different mechanisms.Behav. Neural Biol. 60205–210.

    PubMed  Google Scholar 

  • Mosher, K., Young, D., and Munck, A. (1971). Evidence for irreversible, actinomycin D-sensitive, and temperature-sensitive steps following the binding of cortisol to glucocorticoid receptors and preceding effects on glucose metabolism in rat thymus cells.J. Biol. Chem. 246654–659.

    PubMed  Google Scholar 

  • Orchinik, M., and McEwen, B. S. (1995). Rapid steroid actions in the brain: A critique of genomic and nongenomic mechanisms. In M. Wehling (Eds), CRC Press, Boca Raton, FL, pp. 77–168.

    Google Scholar 

  • Pfaff, D. W. (1980).Estrogens and Brain Function, Springer Verlag, New York.

    Google Scholar 

  • Robinson, B., Emanuel, R., Frim, D., and Majzoub, J. (1988). Glucocorticoid stimulates expression of corticotrophin-releasing hormone gene in human placenta.Proc. Natl. Acad. Sci. USA 855244–5248.

    PubMed  Google Scholar 

  • Sapolsky, R. (1992).Stress, the Aging Brain and the Mechanisms of Neuron Death, MIT Press, Cambridge, MA.

    Google Scholar 

  • Sapolsky, R., Krey, L., and McEwen, B. S. (1985). Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging.J. Neurosci. 51222–1227.

    PubMed  Google Scholar 

  • Sawchenko, P. (1988). Adrenalectomy-induced enhancement of CRF and vasopressin immunoreactivity in parvocellular neurosecretory neurons: Anatomic, peptide and steroid specificity.J. Neurosci. 71093–1106.

    Google Scholar 

  • Schumacher, M., Coirini, H., and McEwen, B. S. (1989). Regulation of high-affinity GABAa receptors in the dorsal hippocampus by estradiol and progesterone.Brain Res. 487178–183.

    PubMed  Google Scholar 

  • Selye, H. (1941). The anesthetic effect of steroid hormones.Proc. Soc. Exp. Biol. Med. 46116–121.

    Google Scholar 

  • Sherry, D. F., Jacobs, L. F., and Gaulin, S. J. (1992). Spatial memory and adaptive specialization of the hippocampus.Trends Neurosci. 15298–303.

    PubMed  Google Scholar 

  • Simerly, R. B. (1991). Prodynorhin and proenkephalin gene expression in the anteroventral periventricular nucleus of the rat: sexual differentiation and hormonal regulation.Mol. Cell. Neurosci. 2473–484.

    Google Scholar 

  • Sloviter, R. (1983). “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies.Brain Res. Bull. 10675–697.

    PubMed  Google Scholar 

  • Sloviter, R., Valiquette, G., Abrams, G., Ronk, E., Sollas, A., Paul, L., and Neubort, S. (1989). Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy.Science 243535–538.

    PubMed  Google Scholar 

  • Starkman, M., Gebarski, S., Berent, S., and Schteingart, D. (1992). Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with cushing's syndrome.Biol. Psychiat. 32756–765.

    PubMed  Google Scholar 

  • Terasawa, E., and Timiras, P. (1968). Electrical activity during the estrous cycle of the rat: Cyclic changes in limbic structures.Endocrinology 83207–216.

    PubMed  Google Scholar 

  • Uno, H., Ross, T., Else, J., Suleman, M., and Sapolsky, R. (1989). Hippocampal damage associated with prolonged and fatal stress in primates.J. Neurosci. 91705–1711.

    PubMed  Google Scholar 

  • Watanabe, Y., Gould, E., Cameron, H., Daniels, D., and McEwen, B. S. (1992a). Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyraidal neurons.Hippocampus 2431–436.

    PubMed  Google Scholar 

  • Watanabe, Y., Gould, E., and McEwen, B. S. (1992b). Stress induces atrophy of apical dendrites of hippocampus CA3 pyramidal neurons.Brain Res. 588341–344.

    PubMed  Google Scholar 

  • Weiland, N. G. (1992a). Glutamic acid decarboxylase messenger ribonucleic acid is regulated by estradiol and progesterone in the hippocampus.Endocrinology 1312697–2702.

    PubMed  Google Scholar 

  • Weiland, N. G. (1992b). Estradiol selectively regulates agonist binding sites on the N-methyl-D-aspartate receptor complex in the CA1 region at the hippocampus.Endocrinology 131662–668.

    PubMed  Google Scholar 

  • Wong, M., and Ross, M. L. (1992). Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons.J. Neurosci. 123217–3225.

    PubMed  Google Scholar 

  • Woolley, C., and McEwen, B. S. (1993). Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat.J. Comp. Neurol. 336293–306.

    PubMed  Google Scholar 

  • Woolley, C., and McEwen, B. S. (1994). Estradiol regulates hippocampal dendritic spine density via an NMDA receptor dependent mechanism.J. Neurosci. 19379.

    Google Scholar 

  • Wooley, C., Gould, E., and McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons.Brain Res. 531225–231.

    PubMed  Google Scholar 

  • Woolley, C., Gould, E., Sakai, R., Spencer, R., and McEwen, B. S. (1991). Effects of aldosterone or RU28362 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat.Brain Res. 554312–315.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McEwen, B.S. Gonadal and adrenal steroids regulate neurochemical and structural plasticity of the hippocampus via cellular mechanisms involving NMDA receptors. Cell Mol Neurobiol 16, 103–116 (1996). https://doi.org/10.1007/BF02088170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02088170

Key words

Navigation