Skip to main content
Log in

A multibeam reconnaissance of the Tonga Trench axis and its intersection with the Louisville guyot chain

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

A Seabeam reconnaissance of 1200 km of the deep sediment-starved axis of Tonga Trench delineated the fine-scale relief at the outcrop of a subduction zone generally characterized by tectonic erosion rather than accretion. The commonest axial cross-section has a steep (12°) irregular inner slope intersecting the thinly sedimented surface of Mesozoic ocean crust, which dips under it at 5–6°. There is little or no intervening turbidite fill, but small lenses interpreted as debris deposits occur at the foot of parts of the inner slope that lack basins or benches which elsewhere obstruct downslope sediment transport. The oceanic slope is severely broken by parallel but slightly sinuous fractures induced by bending of the plate, and entry of outer-slope grabens into the subduction zone is confirmed to be a morphologically and tectonically important process. Arrival of oceanic seamounts and volcanic ridges at the trench outer slope and axis affects the fracture pattern of the oceanic plate, the depth of the temporarily plugged axis, and the relief of the lower inner slope. Subduction of the Louisville guyot chain, or of the extensive hotspot swell and thick sediment apron that surrounds it, has important regional effects as well, shoaling 400 km of trench axis and causing development of a small accretionary prism with trench-slope basins. Because the intersection point of the hot-spot chain has moved rapidly south along the trench, structural changes that occur in the wake of guyot-chain subduction can also be inferred: accretion at the inner slope is followed by rapid tectonic erosion, which unroofs a wider strip of downgoing lithosphere and thereby deepens the trench axis. The longitudinal profile of axial depths, made locally irregular by the collision of medium-scale volcanic and tectonic relief on the oceanic plate, also has a step near 18.5° S, where there is a regional depth difference in the oceanic crust entering the trench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anosov, G. I., Il'yev, A. Y., Suvorov, A. A., Argentov, V. V., Neverov, Y. A., Zhil'tsov, E. G., and Patrikeyev, V. N.: 1983, ‘Features of the Geological Structure of the Junction Zone Between the Tonga and Kermadec Trenches (English translation)’,Geotectonics 17, 252–261.

    Google Scholar 

  • Aubouin, J., Stephan, J. F., Roump, J., and Renard, V.: 1982, ‘The Middle America Trench as an Example of a Subduction System’,Tectonophysics 86, 113–132.

    Google Scholar 

  • Aubouin, J., Bourgois, J., and Azema, J.: 1984, ‘A New Type of Active Margin: The Convergent-extensional Margin, as Exemplified by the Middle America Trench off Guatemala’,Earth Plan. Sci. Letts. 67, 211–218.

    Google Scholar 

  • Billington, S.: 1980, ‘The Morphology and Tectonics of the Subducted Lithosphere in the Tonga-Fiji-Kermadec Region from Seismicity and Focal Mechanism Solutions’,unpublished Ph.D. dissertation, Cornell University, New York, N.Y., 220 p.

    Google Scholar 

  • Bloomer, S. and Fisher, R. L.: ‘Petrology and Geochemistry of Igneous Rocks from the Tonga Trench — A Non-accreting Plate Boundary’,J. Geology, (in press).

  • Bloomer, S. H.: 1983, ‘Distribution and Origin of Igneous Rocks from the Landward Slopes of the Mariana Trench: Implications for its Structure and Evolution’,J. Geophys. Res. 88, 7411–7428.

    Google Scholar 

  • Brodie, J. W.: 1965. ‘Capricorn Guyot, South-west Pacific Ocean’,Trans. Roy. Soc. New Zealand, Geology 3, 151–158.

    Google Scholar 

  • Burns, R. E., Andrews, J. E., van der Lingen, G. J., Churkin, M., Galehouse, J. S., Packham, G. H., Davies, T. A., Kennett, J. P., Dumitrica, P., Edwards, A. R., and von Herzen, R. P.: 1973, ‘Site 204’,Initial Reports of the Deep Sea Drilling Project 21, 33–56.

    Google Scholar 

  • Crough, S. T.: 1983, ‘Hotspot Swells’,Ann. Rev. Earth & Planet. Sci. 11, 165–193.

    Google Scholar 

  • Davey, F. J.: 1980, ‘The Monowai Seamount: An Active Submarine Volcanic Centre on the Tonga-Kermadec Ridge’,New Zealand J. Geol. Geophys. 23, 533–536.

    Google Scholar 

  • Dubois, J., Launay, J., and Recy, J.: 1975, “Some New Evidence on Lithospheric Bulges Close to Island Arcs’,Tectonophysics 26, 189–196.

    Google Scholar 

  • Dupont, J.: 1982, ‘Morphologie et Structures Superficielles de l'arc insulaire des Tonga-Kermadec’,Contribution a l'etude Geodynamique du sud-ouest Pacifique, Travaux et Documents de l'O.R.S.T.O.M., No. 147, pp. 263–282.

    Google Scholar 

  • Dupont, J. and Herzer, R. H.: 1985, ‘Effects of Subduction of the Louisville Ridge on the Structure and Morphology of the Tonga Arc’, in D. W. Scholl and T. L. Vallier (ed.),Geology and offshore resources of Pacific island arcs — Tonga Region, Circum-Pacific Council for Energy and Mineral Resources, Houston, TX, pp. 323–332.

    Google Scholar 

  • Eissler, H. and Kanamori, H.: 1982, ‘A Large Normal-fault Earthquake at the Junction of the Tonga Trench and the Louisville Ridge’,Phys. Earth Plan. Int. 29, 161–172.

    Google Scholar 

  • Fisher, R. L. and Hess, H. H.: 1963, ‘Trenches’, in M. N. Hill (ed.),The Sea, Vol. 3, Interscience, New York, N.Y., pp. 411–436.

    Google Scholar 

  • Fisher, R. L. and Engel, C. G.: 1969, ‘Ultramafic and Basaltic Rocks Dredged from the Nearshore Flank of the Tonga Trench’,Geol. Soc. Am. Bull. 80, 1373–1378.

    Google Scholar 

  • Fisher, R. L.: 1974, ‘Pacific-type Continental Margins’, in C. A. Burk and C. L. Drake (ed.),The Geology of Continental Margins, Springer-Verlag, New York, N.Y., pp. 25–41.

    Google Scholar 

  • Fryer, P. and Smoot, N. C.: 1985, ‘Processes of Seamount Subduction in the Mariana and Izu-Bonin Trenches’,Marine Geology 64, 77–90.

    Google Scholar 

  • Fryer, P., Ambos, E. L., and Hussong, D. M.: 1985, ‘Origin and Emplacement of Mariana Fore-arc Seamounts’,Geology 13, 774–777.

    Google Scholar 

  • GEBCO,: 1982,General Bathymetric Chart of the Oceans, Sheet 5–10, Canadian Hydrographic Service, Ottawa, Canada.

    Google Scholar 

  • Giardini, D. and Woodhouse, J. H.: 1986, ‘Horizontal Shear Flow in the Mantle Beneath the Tonga Arc’,Nature 319, 551–555.

    Google Scholar 

  • Gnibidenko, H. S., Anosov, G. I., Argentov, V. V., and Pushchin, I. K.: 1985, ‘Tectonics of the Tonga-Kermadec Trench and Ozbourn Seamount Junction Area’,Tectonophysics 112, 357–383.

    Google Scholar 

  • Hayes, D. E. and Ewing, M.: 1971, ‘The Louisville Ridge — A Possible Extension of the Eltanin Fracture Zone’, in J. L. Reid (ed.),Antarctic Oceanology I, Amer. Geophys. Union, Antarctic Research Vol. 1, Washington, D.C., pp. 223–228.

    Google Scholar 

  • Hilde, T. W. C., Uyeda, S., and Kroenke, L.: 1976, ‘Tectonic history of the western Pacific’, in C. L. Drake (ed.),Geodynamics progress and prospect, Amer. Gephys. Union, Washington, D.C., pp. 1–15.

    Google Scholar 

  • Hilde, T. W. C.: 1983, ‘Sediment Subduction versus Accretion Around the Pacific’,Tectonophysics 99, 381–397.

    Google Scholar 

  • Isacks, B., Sykes, L. R., and Oliver, J.: 1969, ‘Focal Mechanisms of Deep and Shallow Earthquakes in the Tonga-Kermadec Region and the Tectonics of Island Arcs’,Geol. Soc. Am. Bull. 80, 1443–1470.

    Google Scholar 

  • Isacks, B. L. and Barazangi, M.: 1977, ‘Geometry of Benioff Zones: Lateral Segmentation and Downwards Bending of the Subducted Lithosphere’, in M. Talwani and W. C. Pitman (ed.),Island Arcs, Deep-sea Trenches and Back-arc Basins, Maurice Ewing Seires 1, Am. Geophys. Union, Washington, D.C., pp. 99–114.

    Google Scholar 

  • Johnson, T. and Molnar, P.: 1972, ‘Focal Mechanisms and Plate Tectonics of the Southwest Pacific’,J. Geophys. Res. 77, 5000–5032.

    Google Scholar 

  • Jones, G. M., Hilde, T. W. C., Sharman, G. F., and Agnew, D. C.: 1978, ‘Fault Patterns in Outer Trench Walls and Their Tectonic Significance’,J. Phys. Earth 26 (Supp)., 85–101.

    Google Scholar 

  • Karig, D. E. and Sharman, G. F.: 1975, ‘Subduction and Accretion in Trenches’,Geol. Soc. Am. Bull. 86, 377–389.

    Google Scholar 

  • Kelleher, J. and McCann, W.: 1976, ‘Buoyant Zones, Great Earthquakes, and Unstable Boundaries of Subduction’,J. Geophys. Res. 81, 4885–4896.

    Google Scholar 

  • Larson, R. L. and Chase, C. E.: 1972, ‘Late Mesozoic Evolution of the Western Pacific Ocean’,Geol. Soc. Am. Bull. 83, 3627–3644.

    Google Scholar 

  • Lonsdale, P., Normark, W. R., and Newman, W. A.: 1972, ‘Erosion and sedimentation on Horizon Guyot’,Geol. Soc. Am. Bull. 83, 289–316.

    Google Scholar 

  • Lonsdale, P.: 1975, ‘Sedimentation and Tectonic Modification of the Samoan Archipelagic Apron’,Am. Assoc. Petrol. Geol. Bull. 59, 780–798.

    Google Scholar 

  • Lonsdale, P.: 1978, ‘Ecuadorian Subduction System’,Am. Assoc. Petrol. Geol. Bull. 62, 2454–2477.

    Google Scholar 

  • Lonsdale, P.: submitted, ‘Geography and History of the Louisville Hot-spot Chain’,J. Geophys. Res.

  • Ludwig, W. J., Ewing, J. I., Ewing, M., Murauchi, S., Den, N., Asano, S., Hotta, H., Hayakawa, M., Asanuma, T., Ichikawa, K., and Noguchi, I.: 1966, ‘Sediments and Structure of the Japan Trench’,J. Geophys. Res. 71, 2121–2137.

    Google Scholar 

  • McCann, W. R. and Haberman, R. E.: submitted, ‘Morphologic and Geologic Effects of the Subduction of Bathymetric Highs’,Pure and Applied Geophys.

  • Menard, H. W.: 1956, ‘Archipelagic Aprons’,Am. Assn. Petrol. Geol. Bull. 40, 2195–2210.

    Google Scholar 

  • Menard, H. W., Jordan, T. H., Natland, J. H., and Orcutt, J. A.: 1983, ‘Tectonic Evolution of the Southwestern Tropical Pacific Basin (abst.)’,EOS, Trans. Am. Geophys. Union 63, 315.

    Google Scholar 

  • Mogi, A. and Nishizawa, K.: 1980, ‘Breakdown of a Seamount on the Slope of the Japan Trench’,Proc. Japanese Academy, Ser. B 56, 257–259.

    Google Scholar 

  • Moore, G. F., Curray, J. R., Moore, D. G., and Karig, D. E.: 1980, ‘Variations in Geologic Structure Along the Sunda Fore Arc, Northeastern Indian Ocean’, in D. E. Hayes (ed.),The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Amer. Geophys. Union Monograph 23, Washington, D.C., pp. 145–160.

    Google Scholar 

  • Marauchi, S. and Ludwig, W. J.: 1980, ‘Crustal Structure of the Japan Trench: The Effect of Subduction of Ocean Crust’,Initial Reports of the Deep Sea Drilling Project 56, 57, 463–469.

    Google Scholar 

  • Nasu, N., von Huene, R., Ishawada, Y., Langseth, M., Bruns, T., and Honza, E.: 1980, ‘Interpretation of Multichannel Seismic Reflection Data, Legs 56 and 57, Japan Trench Transect, Deep Sea Drilling Project’,Initial Reports Deep Sea Drilling Project,56,57, 489–504.

    Google Scholar 

  • Natland, J. H., Menard, H. W., and Leg 1 Scientific Party: 1983, ‘Old Ocean Crust in the Southwest Pacific: Volcanism, Hydrothermal Processes and Sedimentary History Revealed by DSDP Leg 91 Coring (abstract)’,EOS, Trans. Am. Geophys. Union 64, 315.

    Google Scholar 

  • Raitt, R. W., Fisher, R. L., and Mason, R. G.: 1955, ‘Tonga Trench’,Geol. Soc. Am. Spec. Paper 62, 237–254.

    Google Scholar 

  • Renard, V. and Allenou, J. P.: 1979, ‘Seabeam, Multi-beam Echo-sounding in “Jean Charcot”’.International Hydrographic Review 56, 35–67.

    Google Scholar 

  • Scholl, D. W., Vallier, T. L., and Stevenson, A. J.: 1982, ‘Sedimentation and Deformation in the Amlia Fracture Zone Sector of the Aleutian Trench’,Marine Geology 48, 105–134.

    Google Scholar 

  • Schroeder, W.: 1984, ‘The Empirical Age-depth Relation and Depth Anomalies in the Pacific Ocean Basin’,J. Geophys. Res. 89, 9873–9883.

    Google Scholar 

  • Schweller, W. J. and Kulm, L. D.: 1978, ‘Depositional Patterns and Channelized Sedimentation in Active Eastern Pacific Trenches’, in D. J. Stanley and G. Kelling (ed.),Sedimentation in Submarine Canyons, Fans and Trenches, Dowden, Hutchinson and Ross, Stroudsburg, PA, pp. 311–324.

    Google Scholar 

  • Shipley, T. H., McMillen, K. J., Watkins, J. S., Sandoval-Ochoa, J. H., and Worzel, J. L.: 1980, ‘Continental Margin and Lower Slope Structures of the Middle America Trench near Acapulco (Mexico)’,Marine Geology 35, 65–82.

    Google Scholar 

  • Shipley, T. H. and Moore, G. F.: 1986, ‘Sediment Accretion, Subduction and Dewatering at the Base of the Trench Slope off Costa Rica: A Seìsmic Reflection View of the Décollement’,J. Geophys. Res. 91, 2019–2028.

    Google Scholar 

  • Smoot, N. C.: 1982, ‘Guyots of the Mid-Emperor Chain, Swath-mapped with Multi-beam Sonar’,Marine Geology 47, 13–163.

    Google Scholar 

  • Smoot, N. C.: 1983, ‘Guyots of the Dutton Ridge at the Bonin/Mariana Trench Juncture as Shown by Multi-beam Surveys’,J. Geology 91, 211–220.

    Google Scholar 

  • Vallier, T. L., R. M. O'Connor, D. W. Scholl, A. J. Stevenson, and P. J. Quinterno: 1985, in D. W. Scholl and T. L. Vallier (ed.),Geology and Offshore Resources of Pacific Island Arcs — Tonga Region, Circum-Pacific Council for Energy and Mineral Resources, Houston, TX, pp. 109–120.

    Google Scholar 

  • Vogt, P. R., Lowrie, A., Bracey, D. R., and Hey, R. N.: 1976, ‘Subduction of Aseismic Oceanic Ridges: Effects on Shape, Seismicity, and Other Characteristics of Consuming Plate Boundaries’,Geol. Soc. Am. Spec. Paper 172, 59.

    Google Scholar 

  • Warsi, W. E., Hilde, T. W. C., and Searle, R. C.: 1983, ‘Convergence Structures of the Peru Trench Between 10° S and 14° S’,Tectonophysics 99, 313–329.

    Google Scholar 

  • Watts, A. B., ten Brink, U. S., Buhl, P., and Brocher, T. M.: 1985, ‘A Multi-channel Seismic Study of Lithospheric Flexure Across the Hawaiian-Emperor Seamount Chain’,Nature 315, 105–111.

    Google Scholar 

  • Watts, A. B., Weissel, J. K., Duncan, R. A., and Larson, R. L.: submitted, ‘The origin of the Louisville Ridge and its relationship to the Eltanin fracture zone system’,J. Geophys. Res.

  • Weissel, J. K.: 1977, ‘Evolution of the Lau Basin by the Growth of Small Plates’, in M. Talwani and W. C. Pitman (ed.),Island Arcs, Deep-sea Trenches and Back-arc Basins, Maurice Ewing Series 1, Am. Geophys. Union, Washington. D.C., pp. 429–436.

    Google Scholar 

  • Winterer, E. L. and Metzler, C. V.: 1984, ‘Origin and Subsidence of Guyots in Mid-Pacific Mountains’.J. Geophys. Res. 89, 9969–9979.

    Google Scholar 

  • Wortel, M. J. and Cloetingh, S. A.: 1985, ‘Accretion and Lateral Variations in Tectonic Structure Along the Peru-Chile Trench’,Tectonophysics 112, 443–462.

    Google Scholar 

  • Wyss, M., Haberman, R. E., and Griesser, J. C.: 1984, ‘Seismic Quiescence and Asperities in the Tonga-Kermadec Arc’,J. Geophys. Res. 89, 9293–9304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lonsdale, P. A multibeam reconnaissance of the Tonga Trench axis and its intersection with the Louisville guyot chain. Mar Geophys Res 8, 295–327 (1986). https://doi.org/10.1007/BF02084016

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02084016

Keywords

Navigation