Skip to main content
Log in

Poly(hydroxyalkanoates) from fluorescent pseudomonads in retrospect and prospect

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

Poly[(R)-3-hydroxyalkanoates] (PHAs) are biopolymers stored by bacteria, which are currently receiving much attention because of their potential as renewable and biodegradable plastics. Most well-known representatives are poly[(R)-3-hydroxybutyrate] and its copolymers with 3-hydroxyvalerate, which have been commercialized under the trademark Biopol. In addition to these rigid materials, the elastomeric medium-chain length PHAs (mcl-PHAs) produced by fluorescent Pseudomonads are now emerging. The present review aims to survey the important developments concerning research and application prospects of mcl-PHAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Anderson and E. A. Dawes (1990)Microbiol. Rev. 54, 450–472.

    CAS  Google Scholar 

  2. A. Steinbüchel (1991) in D. Byrom (Ed.),Biomaterials. Novel Materials from Biological Sources, Macmillan, Basingstoke, pp. 123–213.

    Google Scholar 

  3. P. J. Hocking and R. H. M. Marchessault (1994) in G. J. L. Griffin (Ed.),Chemistry and Technology of Biodegradable Polymers, Blackie A&P, Glasgow, UK, Chap. 4.

    Google Scholar 

  4. P. A. Holmes (1985)Phys. Technol. 16 32–36.

    CAS  Google Scholar 

  5. R. H. Findlay and D. C. White (1983)Appl. Environ. Microbiol. 45 71–76.

    CAS  Google Scholar 

  6. G. Odham, A. Tunlid, G. Westerdahl, and P. Marden (1986)Appl. Environ. Microbiol. 52 905.

    CAS  Google Scholar 

  7. K. P. Caballero, S. F. Karel, and R. A. Register (1995)Int. J. Biol. Macromol. 17 86–92.

    CAS  Google Scholar 

  8. Y. Doi, S. Kitamura, and H. Abe (1995)Macromolecules 28 4822–4828.

    CAS  Google Scholar 

  9. M. J. De Smet, G. Eggink, B. Witholt, J. Kingma, and H. Wynberg (1983)J. Bacteriol. 154 870–878.

    Google Scholar 

  10. A. Steinbüchel and S. Wiese (1992)Appl. Microbiol. Biotechnol. 37 691–697.

    Google Scholar 

  11. H. Abe, Y. Doi, T. Fukushima, and H. Eya (1994)Int. J. Biol. Macromol. 16 115–119.

    CAS  Google Scholar 

  12. E. Y. Lee, D. Jendrossek, A. Schirmer, C. Y. Choi, and A. Steinbuchel (1995)Appl. Microbiol. Biotechnol. 42 901–909.

    CAS  Google Scholar 

  13. G. W. Huisman, O. de Leeuw, G. Eggink, and B. Witholt (1989)Appl. Environ. Microbiol. 55 1949–1954.

    CAS  Google Scholar 

  14. G. W. Haywood, A. J. Anderson, and E. A. Dawes (1989)Biotech. Lett. 11 471–476.

    CAS  Google Scholar 

  15. A. Timm and A. Steinbüchel (1990)Appl. Environ. Microbiol. 56 3360–3367.

    CAS  Google Scholar 

  16. R. G. Lageveen, G. W. Huisman, H. Preusting, P. Ketelaar, G. Eggink, and B. Witholt (1988)Appl. Environ. Microbiol. 54 2924–2932.

    CAS  Google Scholar 

  17. H. Preusting, A. Nijenhuis, and B. Witholt (1990)Macromolecules 23 4220–4224.

    CAS  Google Scholar 

  18. H. Brandl, R. A. Gross, R. W. Lenz, and R. C. Fuller (1988)Appl. Environ. Microbiol. 54 1977–1982.

    CAS  Google Scholar 

  19. R. A. Gross, C. DeMello, R. W. Lenz, H. Brandl, and R. C. Fuller (1989)Macromolecules 22 1106–1115.

    CAS  Google Scholar 

  20. A. Ballistreri, G. Montaudo, G. Impallomeni, R. W. Lenz, Y. B. Kim, and R. C. Fuller (1990)Macromolecules 23 5059.

    CAS  Google Scholar 

  21. A. Steinbüchel, E. Hustede, M. Liebergesell, U. Pieper, A. Timm, and H. Valentin (1992)FEMS Microbiol. Rev. 103 217–230.

    Google Scholar 

  22. F. R. Vanderleij and B. Witholt (1995)Can. J. Microbiol. 41 222–238.

    CAS  Google Scholar 

  23. G. Eggink, P. deWaard, and G. N. M. Huijberts (1992)FEMS Microbiol. Rev. 103 159–164.

    CAS  Google Scholar 

  24. Y. Saito and Y. Doi (1993)Int. J. Biol. Macromol. 15 287–292.

    CAS  Google Scholar 

  25. G. W. Haywood, A. J. Anderson, D. F. Ewing, and E. A. Dawes (1990)Appl. Environ. Microbiol. 56 3354–3359.

    CAS  Google Scholar 

  26. G. N. M. Huijberts, G. Eggink, P. de Waard, G. W. Huisman, and B. Witholt (1992)Appl. Environ. Microbiol. 58 536–544.

    CAS  Google Scholar 

  27. G. W. Huisman, E. Wonink, R. Meima, B. Kazemier, P. Terpstra, and B. Witholt (1991)J. Biol. Chem. 266 2191–2198.

    CAS  Google Scholar 

  28. G. W. Huisman, E. Wonink, G. J. M. De Koning, H. Preusting, and B. Witholt (1992)Appl. Microbiol. Biotechnol. 38 1–5.

    CAS  Google Scholar 

  29. A. Timm and A. Steinbüchel (1992)Eur. J. Biochem. 209 15–30.

    CAS  Google Scholar 

  30. A. Timm, S. Wiese, and A. Steinbuchel (1994)Appl. Microbiol. Biotechnol. 40 669–675.

    CAS  Google Scholar 

  31. A. Steinbuchel, K. Aerts, W. Babel, C. Follner, M. Liebergesell, M. H. Madkour, F. Mayer, U. Pieperfurst, A. Pries, H. E. Valentin, and R. Wieczorek (1995)Can. J. Microbiol. 41 94–105.

    Google Scholar 

  32. R. C. Fuller, J. P. O'Donnel, J. Saulnier, T. E. Redlinger, J. Foster, and R. W. Lenz (1992)FEMS Microbiol. Rev. 103 279–288.

    CAS  Google Scholar 

  33. E. S. Stuart, R. W. Lenz, and R. C. Fuller (1995)Can. J. Microbiol. 41 84–93.

    CAS  Google Scholar 

  34. L. J. R. Foster, R. W. Lenz, and R. C. Fuller (1994)FEMS Microbiol. Lett. 118 279–282.

    CAS  Google Scholar 

  35. A. Steinbuchel and H. E. Valentin (1995)FEMS Microbiol. Lett. 128 219–228.

    Google Scholar 

  36. K. Fritzsche, R. W. Lenz, and R. C. Fuller (1990)Int. J. Biol. Macromol. 12 85–91.

    CAS  Google Scholar 

  37. G. Eggink, H. Van der Wal, G. N. M. Huijberts, and P. De Waard (1993)Ind. Crops Prod. 1 157–163.

    Google Scholar 

  38. G. Eggink, P. Dewaard, and G. N. M. Huijberts (1995)Can. J. Microbiol. 41 14–21.

    CAS  Google Scholar 

  39. M. H. Choi and S. C. Yoon (1994)Appl. Environ. Microbiol. 60 3245–3254.

    CAS  Google Scholar 

  40. Y. B. Kim, R. W. Lenz, and R. C. Fuller (1995)J. Polym. Sci. A- Polym. Chem. 33 1367–1374.

    CAS  Google Scholar 

  41. K. Fritzsche, R. W. Lenz, and R. C. Fuller (1990)Int. J. Biol. Macromol. 12 92–101.

    CAS  Google Scholar 

  42. C. Scholz, S. Wolk, R. W. Lenz, and R. C. Fuller (1994)Macromolecules 27 6358–6362.

    CAS  Google Scholar 

  43. C. Scholz, R. C. Fuller, and R. W. Lenz (1994)Macromolecules 27 2886–2889.

    CAS  Google Scholar 

  44. C. Scholz, R. C. Fuller, and R. W. Lenz (1994)Macromol. Chem. Phys. 195 1405–1421.

    CAS  Google Scholar 

  45. R. W. Lenz, B. W. Kim, H. W. Ulmer, K. Fritzsche, E. Knee, and R. C. Fuller (1990) in E. A. Dawes (Ed.),Novel Biodegradable Polymers, Kluwer Academic, Dordrecht, pp. 23–25.

    Google Scholar 

  46. Y. Doi and C. Abe (1990)Macromolecules 23 3705–3707.

    CAS  Google Scholar 

  47. C. Abe, Y. Taima, Y. Nakamura, and Y. Doi (1990)Polym. Comm. 31 404–406.

    CAS  Google Scholar 

  48. K. Hori, K. Soga, and Y. Doi (1994)Biotechnol. Lett. 16 501–506.

    CAS  Google Scholar 

  49. K. Fritzsche, R. W. Lenz, and R. C. Fuller (1990)Makromol. Chem. 191 1957–1965.

    CAS  Google Scholar 

  50. Y. B. Kim, R. W. Lenz, and R. C. Fuller (1991)Macromolecules 24 5256–5260.

    CAS  Google Scholar 

  51. R. W. Lenz, Y. B. Kim, R. C. Fuller (1992)FEMS Microbiol. Rev. 103 207–214.

    CAS  Google Scholar 

  52. O. Y. Kim, R. A. Gross, and D. R. Rutherford (1995)Can. J. Microbiol. 41 32–43.

    CAS  Google Scholar 

  53. H. Ritter and A. G. Vonspee (1994)Chem. Phys. 195 1665–1672.

    CAS  Google Scholar 

  54. P. de Waard, H. van der Wal, G. N. M. Huijberts, and G. Eggink (1993)J. Biol. Chem. 268 157–163.

    Google Scholar 

  55. H. Preusting, R. van Houten, A. Hoefs, E. Kool van Langenberghe, O. Favre-Bulle, and B. Witholt (1993)Biotechnol. Bioeng. 41 550–556.

    CAS  Google Scholar 

  56. H. Preusting, J. Kingma, and B. Witholt (1991)Enzym. Microbiol. Technol. 13 770–780.

    CAS  Google Scholar 

  57. B. A. Ramsay, I. Saracovan, J. A. Ramsay, and R. H. Marchessault (1991)Appl. Environ. Microbiol. 57 625–629.

    CAS  Google Scholar 

  58. H. Preusting, W. Hazenberg, and B. Witholt (1993)Enzyme Microb. Technol. 15 311–316.

    CAS  Google Scholar 

  59. G. N. M. Huijberts, H. Vanderwal, C. Wilkinson, and G. Eggink (1994)Biotechnol. Techn. 8 187–192.

    CAS  Google Scholar 

  60. G. J. M. De Koning, M. B. Kellerhals, C. van Meurs, and B. Witholt (1996) submitted for publication.

  61. R. H. Marchessault, F. G. Morin, S. Wong, and I. Saracovan (1995)Can. J. Microbiol. 41 138–142.

    CAS  Google Scholar 

  62. G. J. M. De Koning and P. J. Lemstra (1992)Polymer 33 3292–3294.

    Google Scholar 

  63. K. D. Gagnon, R. W. Lenz, R. J. Farris, and R. C. Fuller (1992)Macromolecules 25 3723–3728.

    CAS  Google Scholar 

  64. G. J. M. De Koning and I. A. Maxwell (1993)J. Environm. Polym. Degrad. 1 223.

    Google Scholar 

  65. R. H. Marchessault, C. J. Monasterios, and P. Lepoutre (1990) in E. A. Dawes (Ed.),Novel Biodegradable Microbial Polymers, Kluwer Academic, Dordrecht, pp. 97–112.

    Google Scholar 

  66. K. Hori, K. Soga and Y. Doi (1994)Biotechnol. Lett. 16 709–714.

    CAS  Google Scholar 

  67. R. H. Marchessault, C. J. Monasterios, F. G. Morin, and P. R. Sundararajan (1990)Int. J. Biol. Macromol. 12 158–165.

    CAS  Google Scholar 

  68. G. J. M. De Koning, H. H. M. Van Bilsen, P. J. Lemstra, W. Hazenberg, B. Witholt, H. Preusting, J. G. Van der Galiën, A. Schirmer, and D. Jendrossek (1994)Polymer 35 2090–2097.

    Google Scholar 

  69. H. J. Tao, W. J. Macknight, K. D. Gagnon, R. W. Lenz, and S. L. Hsu (1995)Macromolecules 28 2016–2022.

    CAS  Google Scholar 

  70. R. Peres and R. W. Lenz (1994)Polymer 35 1059–1067.

    CAS  Google Scholar 

  71. G. J. M. De Koning (1995)Can. J. Microbiol. 41 303–309.

    Google Scholar 

  72. K. D. Gagnon, R. W. Lenz, R. J. Farris, and R. C. Fuller (1994)Polymer 35 4358–4367.

    CAS  Google Scholar 

  73. K. D. Gagnon, R. W. Lenz, R. J. Farris, and R. C. Fuller (1994)Polymer 35 4368–4375.

    CAS  Google Scholar 

  74. A. Schirmer, D. Jendrossek, and H. G. Schlegel (1993)Appl. Environ. Microbiol. 59 1220.

    CAS  Google Scholar 

  75. Y. Kanesawa, N. Tanahashi, and Y. Doi (1994)Polym. Degrad. Stabil. 45 179–185.

    CAS  Google Scholar 

  76. A. Schirmer and D. Jendrossek (1994)J. Bacteriol. 176 7065–7073.

    CAS  Google Scholar 

  77. A. Schirmer, C. Matz, and D. Jendrossek (1995)Can. J. Microbiol. 41 170–179.

    Google Scholar 

  78. P. Barak, Y. Coquet, T. R. Halbach, and J. A. E. Molina (1991)J. Environ. Qual. 20 173–179.

    Article  CAS  Google Scholar 

  79. H. Brandl, R. Bachofen, J. Mayer, and E. Wintermantel (1995)Can. J. Microbiol. 41 143–153.

    Article  CAS  Google Scholar 

  80. D. F. Gilmore, S. Antoun, R. W. Lenz, S. Goodwin, R. Austin, and R. C. Fuller (1992)J. Ind. Microbiol. 10 199–206.

    CAS  Google Scholar 

  81. D. F. Gilmore, S. Antoun, R. W. Lenz, and R. C. Fuller (1993)J. Environm. Polym. Degrad. 1 269–274.

    CAS  Google Scholar 

  82. C. Doyle, E. T. Tanner, and W. Bonfield (1991)Biomaterials 12 841.

    CAS  Google Scholar 

  83. R. H. Marchessault, T. L. Bluhm, Y. Deslandes, G. K. Hamer, W. J. Orts, P. R. Sundararajan, and M. G. Taylor (1988)Makromol. Chem. Macromol. Symp. 19 235–254.

    CAS  Google Scholar 

  84. U. J. Hanggi (1995)FEMS Microbiol. Rev. 16 213–220.

    Google Scholar 

  85. C. Nawrath, Y. Poirier, and C. Somerville (1995)Mol. Breed. 1 105–122.

    CAS  Google Scholar 

  86. Y. Poirier, C. Nawrath, and C. Somerville (1995)Biotechnology 13 142–150.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Koning, G., Kellerhals, M., van Meurs, C. et al. Poly(hydroxyalkanoates) from fluorescent pseudomonads in retrospect and prospect. J Environ Polym Degr 4, 243–252 (1996). https://doi.org/10.1007/BF02070693

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02070693

Key words

Navigation