Skip to main content
Log in

Morphology and mitochondrial function of the surviving myocardium following myocardial infarction in the cat

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The surviving myocardium of the cat was studied 7 days and 6 weeks following experimental infarction.

Seven days after infarction, ultrastructural alterations of the mitochondria indicative of slight hypoxic injury—clearing of the matrix and loss of dense matrix granules-were found. Together with intracellular edema and glycogen depletion this result was considered as a sign of relative hypoxia in the surviving myocardium 7 days after infarction. At the same time β-glucuronidase activity of tissue homogennates was found to be elevated. Focal ischemic lesions in remote myocardium which have been described by other authors (5, 6, 23) were not detected in our experiments.

Six weeks after infarction, the fractional volume occupied by myofibrils had increased whereas the fractional volume of mitochondria had remained unchanged (left ventricle) resp. had decreased (right ventricle). There were no qualitative changes detectable at the ultrastructural level. Based on the morphometric investigation of Anversa (1, 2), our results were regarded indicative of mild compensatory hypertrophy of the surviving myocardium. Glutamate dehydrogenase activity of tissue homogenates was shown to be increased when compared to control values.

Furthermore our morphometric results showed that the unit mass of mitochondria has to render an enhanced amount of energy six weeks after infarction which might leave the surviving myocardium with a higher susceptibility to future hypoxic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anversa, P., L. Vitali-Mazza, O. Visioli, G. Marchetti: Experimental cardiac hypertrophy: A quantitative ultrastructural study in the compensatory stage. J. Mol. Cell. Cardiology3, 213–227 (1971).

    Google Scholar 

  2. Anversa, P., A. V. Loud, F. Giacomelli, J. Wiener: Absolute morphometric study of myocardial hypertrophy in experimental hypertension. Lab. Invest.38, No. 5, 597–609 (1978).

    PubMed  Google Scholar 

  3. Bergmeyer, H. U.: Methoden der enzymatischen Analyse. Weinheim/Bergstraße Vol.II: 964–979 (1974).

    Google Scholar 

  4. Cohn, Z. A., J. G. Hirsch: Influence of phagocytosis on the intracellular distribution of granule-associated components of polymorphonuclear leucocytes. J. exp. Med.112, 1015–1022 (1960).

    PubMed  Google Scholar 

  5. Constantini, C., E. Corday, T. Lang: Revascularization after 3h of coronary arterial occlusion: Effects of regional cardiac metabolic function and infarct size. Amer. J. Cardiol.36, 368–384 (1975).

    PubMed  Google Scholar 

  6. Corday, E., L. Kaplan, S. Meerbaum, J. Brasch, C. Constantini, T.-W. Lang, H. Gold, S. Rubins, J. Osher. Consequences of coronary arterial occlusion on remote myocardium: Effects of occlusion and reperfusion. Amer. J. Cardiol.36, 385–394 (1975).

    PubMed  Google Scholar 

  7. Fawcett, D. W., N. S. McNutt: The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J. Cell. Biol.42, 1–45 (1969).

    PubMed  Google Scholar 

  8. Gottwik, M. G., E. S. Kirk, S. Hoffstein, W. B. Weglicki: Effect of collateral flow on epicardial and endocardial lysosomal hydrolases in acute myocardial ischemia. J. Clin. Invest.56, 914–923 (1975).

    PubMed  Google Scholar 

  9. Graumann, W., K. Neumann (Eds.): Handbuch der Histochemie, Vol. 7, Section 1. Stuttgart, pp. 58–60 (1960).

  10. Gudbjarnason, S., P. Mathes, K. G. Ravens: Functional compartmentation of ATP and creatine phosphate in heart muscle. J. Mol. Cell Cardiol.1, 325–339 (1970).

    PubMed  Google Scholar 

  11. Gudbjarnason, S., P. S. Puri, P. Mathes: Biochemical changes in non-infarcted heart muscle following myocardial infarction. J. Mol. Cell. Cardiol.2, 253–276 (1971).

    PubMed  Google Scholar 

  12. Korb, G., V. Totović: Elektronenmikroskopische Untersuchungen über Frühveränderungen im Zentrum und in der Peripherie experimenteller Herzinfarkte. Virch. Arch. path. Anat.342, 85–96 (1967).

    Google Scholar 

  13. Lochner, A., A. J. Brink, A. Brink, A. J. Bester, J. J. Van der Walt: Protein synthesis in myocardial ischaemia and infarction. J. Mol. Cell. Cardiol.3, 1–14 (1971).

    PubMed  Google Scholar 

  14. Mathes, P., C. Cowan, S. Gudbjarnason: Storage and metabolism of norepinephrine after experimental myocardial infarction. Amer. J. Physiol.220, 27–32 (1971).

    PubMed  Google Scholar 

  15. Mathes, P., S. Gudbjarnason: Changes in norepinephrine stores in the canine heart following experimental myocardial infarction. Amer. Heart J. 81, No. 2, 211–219 (1971).

    PubMed  Google Scholar 

  16. Mathes, P., D. W. Sack, D. Romig, W. Erhardt, W. Heinkelmann: Kontraktilität des überlebenden Herzmuskels nach experimentellem Infarkt. Z. Kardiol.64, 503–515 (1975).

    PubMed  Google Scholar 

  17. Mathes, P., D. Romig, D. Sack, W. Erhardt: Experimental myocardial infarction in the cat: I. Reversible decline in contractility of noninfarcted muscle. Circulat. Res.38, No. 6, 540–546 (1976).

    PubMed  Google Scholar 

  18. Richardson, J. A.: Circulating levels of catecholamines in acute myocardial infarction and angina pectoris. Progr. Cardiovasc. Diseases6, 56–62 (1963).

    Google Scholar 

  19. Sachs, L.: Angewandte Statistik. Springer-Verlag, (Berlin, Heidelber New York 1974).

    Google Scholar 

  20. Schaper, J., J. Mulch, B. Winkler, W. Schaper: Ultrastructural, functional and biochemical criteria for estimation of reversibility of ischemic injury: A study on the effects of global ischemia on the isolated dog heart. J. Mol. Cell. Cardiol.11, 521–541 (1979).

    PubMed  Google Scholar 

  21. Smith, A. L., J. W. Bird: Distribution and particle properties of the vacuolar apparatus of cardiac muscle tissue. I. Biochemical characterization of cardiac muscle lysosomes and the isolation and characterization of acid, neutral and alkaline proteases. J. Mol. Cell. Cardiol.7, 39–61 (1975).

    PubMed  Google Scholar 

  22. Valori, C., M. Thomas, J. Shillingford: Free noradrenaline and adrenaline excretion in relation to clinical syndromes following myocardial infarction. Amer. J. Cardiol.20, 605–617 (1967).

    PubMed  Google Scholar 

  23. Vikhert, A. M., N. M. Cherpachenko: changes in metabolism of undamaged sections of myocardium following infarction. Circulat. Res.34, 35, Suppl. III, 182–191 (1974).

    Google Scholar 

  24. Weibel, E. R., G. S. Kistler, W. F. Scherle: Practical stereological methods for morphometric cytology, J. Cell. Biol.30, 23–38 (1966).

    PubMed  Google Scholar 

  25. Welman, E., T. J. Peters: Properties of lysosomes in guinea pig heart: Subcellular distribution and in vitro stability. J. Mol. Cell. Cardiol.8, 443–463 (1976).

    PubMed  Google Scholar 

  26. Winkler, B., J. Schaper, K.-U. Thiedemann, B. Wüsten: Application of a computerized system for the morphometric analysis of biological material. Proceedings of the 6th European Congress on Electron Microscopy, Jerusalem, pp. 146–149 (1976).

  27. Winkler, B., H. Schäfer, C. Hübner, J. Schaper: An improved method in morphometry of small blood vessels. Proceedings of the Microscopical Society of Canada Vol. 5. Ninth International Congress on Electron Microscopy, Toronto, J. M. Sturgess (Ed.), pp. 68–69 (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weitbrecht, M., Schaper, J., Zänker, K. et al. Morphology and mitochondrial function of the surviving myocardium following myocardial infarction in the cat. Basic Res Cardiol 78, 423–434 (1983). https://doi.org/10.1007/BF02070166

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02070166

Key words

Navigation