Skip to main content
Log in

Stochastic quasigradient methods for optimization of discrete event systems

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, stochastic programming techniques are adapted and further developed for applications to discrete event systems. We consider cases where the sample path of the system depends discontinuously on control parameters (e.g. modeling of failures, several competing processes), which could make the computation of estimates of the gradient difficult. Methods which use only samples of the performance criterion are developed, in particular finite differences with reduced variance and concurrent approximation and optimization algorithms. Optimization of the stationary behavior is also considered. Results of numerical experiments and convergence results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. F. Archetti and A. Sciomachen,Representation, Analysis and Simulation of Manufacturing Systems by Petri Net Based Models, Lecture Notes in Control and Information Sciences, Vol. 103 (Springer, 1987), pp. 162–178.

  2. F. Archetti, A. Sciomachen and M.G. Speranza, Evaluation of dispatching rules in a robot handling system, Manuscript (1989).

  3. J.R. Birge and R.J.-B. Wets, Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse, Math. Progr. Stusy 27(1986)54–102.

    Google Scholar 

  4. M.A. Crane and D.L. Iglehart, Simulating stable stochastic systems, III. Regenerative processes and discrete-event simulations, Oper. Res. 23(1975)33–45.

    Google Scholar 

  5. M. Dempster (ed.),Stochastic Programming (Academic Press, London, 1980).

    Google Scholar 

  6. Y. Dodge, V. Fedorov and H. Wynn (eds.),Optimal Design and Analysis of Experiments (North-Holland, Amsterdam, 1988).

    Google Scholar 

  7. J. Dupacová and R.J.-B. Wets, Asymptotic behavior of statistical estimators and optimal solutions for stochastic optimization problems, Working Paper WP-86-112, IIASA, Laxenburg (1986).

  8. Yu. Ermoliev,Methods of Stochastic Programming (Nauka, Moscow, 1976), in Russian.

    Google Scholar 

  9. Yu. Ermoliev, Stochastic quasigradient methods and their applications to system optimization, Stochastics 9(1983)1–36.

    Google Scholar 

  10. Yu. Ermoliev and R.J.-B. Wets,Numerical Techniques for Stochastic Optimization (Springer, 1988).

  11. A.A. Gaivoronski, On nonstationary stochastic optimization problems, Kibernetika 4(1978), in Russian [Engl. transl.: Cybernetics 14 (1978) no. 4].

  12. A.A. Gaivoronski, Approximation methods of solution of stochastic programming problems, Kibernetika 2(1982), in Russian [Engl. transl.: Cybernetics 18 (1982) no. 2].

  13. A.A. Gaivoronski, Implementation of stochastic quasigradient methis, in:Numerical Techniques for Stochastic Optimization, ed. Yu. Ermoliev and R.J.-B. Wets (Springer, 1988), pp. 313–352.

  14. A.A. Gaivoronski, Interactive program SQG-PC for solving stochastic programming problems on IBM PC/XT/AT compatibles, user guide, Working Paper WP-88-11, IIASA, Laxenburg (1988).

  15. A.A. Gaivoronski, Perturbation analysis and optimization of general discrete event dynamic systems using augmented IPA estimates: Part I, Working Paper, Institute of Cybernetics, Kiev (1990).

    Google Scholar 

  16. P. Glasserman and W.-B. Gong, Smoothed perturbation analysis for a class of discrete event systems, IEEE Trans. Auto. Control AC-35(1990)1218–1230.

    Google Scholar 

  17. P.W. Glynn, Optimization of stochastic systems, in:Proc. 1986 Winter Simulation Conf. (1986).

  18. W.-B. Gong and Y.C. Ho, Smoothed (conditional) perturbation analysis of descrete event dynamic systems, IEEE Trans. Auto. Control AC-32(1987)856–866.

    Google Scholar 

  19. A.M. Gupal,Stochastic Methods for Solution of Nonsmooth Extremal Problems (Naukova Dumka, Kiev, 1979).

    Google Scholar 

  20. P. Heidelberger, X.R. Cao, M.A. Zazanis and R. Suri, Convergence properties of infinitesimal perturbation analysis estimates, Manag. Sci. 34 (1988) no. 11.

    Google Scholar 

  21. Y.C. Ho (ed.),A Selected and Annotated Bibliography on Perturbation Analysis, Lecture Notes in Control and Information Sciences, Vol. 103 (Springer, 1987), pp. 162–178.

  22. P.J. Huber,Robust Statistics (Wiley, New York, 1981).

    Google Scholar 

  23. K. Inan and P. Varaya,Finitely Recursive Processes, Lecture Notes in Control and Information Sciences, Vol. 103 (Springer, 1987), pp. 162–178.

    Google Scholar 

  24. S.H. Jacobson and L.W. Schruben, Techniques for simulation response optimization, Oper. Res. Lett. (Feb. 1989)1–9.

  25. P. Kall,Stochastic Linear Programming (Springer, Berlin, 1976).

    Google Scholar 

  26. P. Kall, On approximations and stability in stochastic programming, in:Parametric Optimization and Related Topics, ed. J. Guddat, H.Th. Jongen, B. Kummer and F. Nozicka (Akademie-Verlag, Berlin, 1987), pp. 387–407.

    Google Scholar 

  27. J. Kiefer and J. Wolfowitz, Stochastic estimation of a maximum of a regression function, Ann. Math. Statist. 23(1952)462–466.

    Google Scholar 

  28. A.J. King and R.T. Rockafellar, Non-normal asymptotic behavior of solution estimates in linear-quadratic stochastic optimization, Manuscript, University of Washington, Seattle (1986).

    Google Scholar 

  29. H. Kushner and D.S. Clark, Stochastic approximation for constrained and unconstrained systems, Appl. Math. 26 (1978).

  30. Y.T. Leung and R. Suri, Finite-time behavior of two simulation optimization algorithms, in:Proc. 1990 Winter Simulation Conf. (1990), pp. 372–376.

  31. K. Marti and E. Plöchinger, Optimal step sizes in semi-stochastic approximation procedures, Optimization 21 (1990).

  32. K. Marti,Conf. on Computationally Intensive Methods in Simulation and Optimization, IIASA, Laxenburg (1990).

  33. D.L. McLeish and S. Rollans, Conditioning for variance reduction in estimating sensitivity of simulations, Ann. Oper. Res., this volume.

  34. M.S. Meketon, Optimization in simulation: A survey of recent results, in:Proc. 1987 Winter Simulation Conf., ed. A. Thesen, H. Grant and W.D. Kelton (1987), pp. 58–61.

  35. M.K. Molloy, Performance analysis using stochastic Petri nets, IEEE Trans. Comput. C-31(1982)913–917.

    Google Scholar 

  36. R.H. Myers,Response Surface Methodology (Allyn and Bacon, Boston, MA, 1977).

    Google Scholar 

  37. J.L. Nazareth and R.J.-B. Wets, Algorithms for stochastic programs: The case of non-stochastic tenders, Math. Progr. Study 28(1986)1–28.

    Google Scholar 

  38. J. Neveau,Discrete Parameter Martingales (North-Holland, Amsterdam, 1975).

    Google Scholar 

  39. G. Pflug, On the determination of the step-size in stochastic quasigradient methods, Working Paper CP-83-25, IIASA, Laxenburg (1983).

  40. G. Pflug, On-line optimization simulated Markov processes, Math. Oper. Res. (1990), to appear.

  41. B.T. Poliak,Introduction to Optimization (Nauka, Moscow, 1983), in Russian.

    Google Scholar 

  42. A. Prékopa, Contributions to the theory of stochastic programming, Math. Progr. 4(1973)202–221.

    Google Scholar 

  43. M. Reiman and A. Weiss, Sensitivity analysis for simulations via likelihood ratios, Oper. Res. 37(1989)830–844.

    Google Scholar 

  44. S.M. Robinson and R.J.-B. Wets, Stability in two-stage stochastic programming, SIAM J. Control Optim. 25(1987)1409–1416.

    Google Scholar 

  45. R. Rubinstein, Sensitivity analysis and performance extrapolation for computer simulation models, Oper. Res. 37(1989)72–81.

    Google Scholar 

  46. R. Rubinstein, How to optimize discrete-event systems fro a single sample path by the score function method, Ann. Oper. Res. 27(1991)175–212.

    Google Scholar 

  47. A. Ruszczynski and W. Syski, A method of aggregate stochastic subgradients with on-line stepsize rules for convex stochastic programming problems, Math. Progr. Study 28(1986)113–131.

    Google Scholar 

  48. J. Sacks, Ann. Math. Statist. 29, pp. 343–405.

  49. J. Sacks, W.J. Welch, T.J. Mitchell and H.P. Wynn, Design and analysis of computer experiments, Statist. Sci. 4(1989)409–435.

    Google Scholar 

  50. A. Shapiro, Asymptotic properties of statistical estimators in stochastic programming, Ann. Statist. 17(1989)841–858.

    Google Scholar 

  51. R. Suri, Perturbation analysis: The state of the art and research issues explained via theGI/G/1 queue, Proc. IEEE 77(1989)114–137.

    Google Scholar 

  52. P. Varaya and A.B. Kurzhanski (eds.),Discrete Event Systems: Models and Applications, IIASA Conf., Sopron, Hungary (August 3–7 (1987), Lecture Notes in Control and Information Sciences, Vol. 103 (Springer, 1987).

  53. W. Whitt, Continuity of generalized semi-Markov process, Math. Oper. Res. 5(1980)494–501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermoliev, Y.M., Gaivoronski, A.A. Stochastic quasigradient methods for optimization of discrete event systems. Ann Oper Res 39, 1–39 (1992). https://doi.org/10.1007/BF02060934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02060934

keywords

Navigation