Skip to main content
Log in

Impurity lattice location and recovery of structural defects in semiconductors studied by emission channeling

  • Invited Paper
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Doping of semiconductors by ion implantation usually requires implantation doses below 1013 cm−2 to obtain typical impurity concentrations of <1018 cm−3. The lattice location of impurities as well as the defect recovery after such low dose implantations can be studied using the emission channeling technique. In this technique, single crystals are doped with radioactive probe atoms and the channeling effects of electrons, positrons or α-particles emitted from these atoms are measured. We present a quantitative analysis of electron emission channeling measurements after heavy-ion implantation into Si and III–V compound semiconductors by comparison with calculated channeling profiles based on the dynamical theory of electron diffraction. For In atoms implanted into Si, complete substitutionality was found after rapid thermal annealing to 1200 K. For lower annealing temperatures, the observed channeling effects indicate small mean displacements (of about 0.2 Å) of the In atoms from substitutional sites, caused by residual implantation defects. For GaAs, GaP and InP implanted at low temperatures with In or Cd isotopes, pronounced recovery stages around 300, 400 and 350 K, respectively, were observed and substitutional fractions close to 100% were derived after annealing above the stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.C. Feldman, J.W. Mayer and S.T. Picraux,Materials Analysis by Ion Channeling (Academic Press, New York, 1982).

    Google Scholar 

  2. D.V. Morgan (ed.),Channeling (Wiley, London, 1973).

    Google Scholar 

  3. J.W. Mayer, in:Channeling, see ref. [2](, p. 453.

    Google Scholar 

  4. H. Hofsäss and G. Lindner, Phys. Rep. 210(1991)121.

    Google Scholar 

  5. E. Uggerhøj, Phys. Lett. 22(1966)382.

    Google Scholar 

  6. G. Lindner, H. Hofsäss, S. Winter, B. Besold, E. Recknagel, G. Weyer and J.W. Petersen, Phys. Rev. Lett. 57(1986)2283.

    Google Scholar 

  7. S. Winter, S. Blässer, H. Hofsäss, S. Jahn, G. Lindner and E. Recknagel, Mater. Sci. Forum 38–41(1989)1221.

    Google Scholar 

  8. H. Hofsäss, S. Winter, S.G. Jahn, U. Wahl and E. Recknagel, Nucl. Instr. Meth. B63(1992)83.

    Google Scholar 

  9. U. Wahl, H. Hofsäss, S.G. Jahn, S. Winter and E. Recknagel, Nucl. Instr. Meth. B64(1992)221.

    Google Scholar 

  10. U. Wahl, H. Hofsäss, S. Jahn, S. Winter and E. Recknagel, Appl. Phys. Lett. 62(1993)684.

    Google Scholar 

  11. A. Howie, in:Diffraction and Imaging Techniques in Material Science, 2nd Ed., eds. S. Amelinckx and R. Gevers (North-Holland, Amsterdam, 1978) p. 457.

    Google Scholar 

  12. H. Hofsäss, B. Besold, G. Lindner, S. Winter, E. Recknagel and G. Weyer, in:Relativistic Channeling, eds. R.A. Carrigan and J.A. Ellison, ASI Series B, Physics Vol. 165 (Plenum, New York, 1987) p. 483.

    Google Scholar 

  13. S.K. Andersen, F. Bell, F. Frandsen and E. Uggerhøj, Phys. Rev. B8(1973)4913.

    Google Scholar 

  14. P. Lervig, J. Lindhard and V. Nielsen, Nucl. Phys. A96(1967)481.

    Google Scholar 

  15. J.U. Andersen, S.K. Andersen and W.M. Augustyniak, Mat. Fys. Medd. Dan. Vid. Selsk. 39(1977).

  16. P.A. Doyle and P.S. Tumer, Acta Cryst. A24(1968)390.

    Google Scholar 

  17. J.U. Andersen, E. Bonderup and E. Laegsgaard, in:Coherent Radiation Sources, eds. A.W. Sáenz and H. Überall (Springer, Berlin, 1985) p. 127.

    Google Scholar 

  18. J.U. Andersen, E. Bonderup, E. Laegsgaard, B.B. Marsh and A.H. Sorensen. Nucl. Instr. Meth. 194(1982)209.

    Google Scholar 

  19. O.H. Nielsen, F.K. Larsen, S. Damgaard, J.W. Petersen and G. Weyer, Z. Phys. B52(1983)99.

    Google Scholar 

  20. J.W. Mayer and E. Rimini,Ion Beam Handbook for Materials Analysis (Academic Press, New York, 1977).

    Google Scholar 

  21. J.F. Ziegler, J.P. Biersack and U. Littmark,Stopping and Ranges of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  22. M. Deicher, Nucl. Instr. Meth. B63(1992)189.

    Google Scholar 

  23. G. Weyer, S. Damgaard, J.W. Petersen and J. Hanemeier, Nucl. Instr. Meth. 199(1982)441.

    Google Scholar 

  24. S. Unterricker, Isotopenpraxis 25(1989)221.

    Google Scholar 

  25. S. Winter, S. Blässer, H. Hofsäss, S.G. Jahn, G. Lindner, U. Wahl and E. Recknagel, Nucl. Instr. Meth. B48(1990)211.

    Google Scholar 

  26. S.G. Jahn, H. Hofsäss, U. Wahl, S. Winter and E. Recknagel, Appl. Surf. Sci. 50(1991)169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofsäss, H., Wahl, U. & Jahn, S.G. Impurity lattice location and recovery of structural defects in semiconductors studied by emission channeling. Hyperfine Interact 84, 27–41 (1994). https://doi.org/10.1007/BF02060641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02060641

Keywords

Navigation